Logo Search packages:      
Sourcecode: nmap version File versions  Download package

gencode.c

/*#define CHASE_CHAIN*/
/*
 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
 *    The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that: (1) source code distributions
 * retain the above copyright notice and this paragraph in its entirety, (2)
 * distributions including binary code include the above copyright notice and
 * this paragraph in its entirety in the documentation or other materials
 * provided with the distribution, and (3) all advertising materials mentioning
 * features or use of this software display the following acknowledgement:
 * ``This product includes software developed by the University of California,
 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
 * the University nor the names of its contributors may be used to endorse
 * or promote products derived from this software without specific prior
 * written permission.
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 */
#ifndef lint
static const char rcsid[] _U_ =
    "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.290.2.16 2008-09-22 20:16:01 guy Exp $ (LBL)";
#endif

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#ifdef WIN32
#include <pcap-stdinc.h>
#else /* WIN32 */
#include <sys/types.h>
#include <sys/socket.h>
#endif /* WIN32 */

/*
 * XXX - why was this included even on UNIX?
 */
#ifdef __MINGW32__
#include "IP6_misc.h"
#endif

#ifndef WIN32

#ifdef __NetBSD__
#include <sys/param.h>
#endif

#include <netinet/in.h>

#endif /* WIN32 */

#include <stdlib.h>
#include <string.h>
#include <memory.h>
#include <setjmp.h>
#include <stdarg.h>

#ifdef MSDOS
#include "pcap-dos.h"
#endif

#include "pcap-int.h"

#include "ethertype.h"
#include "nlpid.h"
#include "llc.h"
#include "gencode.h"
#include "ieee80211.h"
#include "atmuni31.h"
#include "sunatmpos.h"
#include "ppp.h"
#include "pcap/sll.h"
#include "arcnet.h"
#ifdef HAVE_NET_PFVAR_H
#include <sys/socket.h>
#include <net/if.h>
#include <net/pfvar.h>
#include <net/if_pflog.h>
#endif
#ifndef offsetof
#define offsetof(s, e) ((size_t)&((s *)0)->e)
#endif
#ifdef INET6
#ifndef WIN32
#include <netdb.h>      /* for "struct addrinfo" */
#endif /* WIN32 */
#endif /*INET6*/
#include <pcap/namedb.h>

#define ETHERMTU  1500

#ifndef IPPROTO_SCTP
#define IPPROTO_SCTP 132
#endif

#ifdef HAVE_OS_PROTO_H
#include "os-proto.h"
#endif

#define JMP(c) ((c)|BPF_JMP|BPF_K)

/* Locals */
static jmp_buf top_ctx;
static pcap_t *bpf_pcap;

/* Hack for updating VLAN, MPLS, and PPPoE offsets. */
#ifdef WIN32
static u_int      orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
#else
static u_int      orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
#endif

/* XXX */
#ifdef PCAP_FDDIPAD
static int  pcap_fddipad;
#endif

/* VARARGS */
void
bpf_error(const char *fmt, ...)
{
      va_list ap;

      va_start(ap, fmt);
      if (bpf_pcap != NULL)
            (void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
                fmt, ap);
      va_end(ap);
      longjmp(top_ctx, 1);
      /* NOTREACHED */
}

static void init_linktype(pcap_t *);

static void init_regs(void);
static int alloc_reg(void);
static void free_reg(int);

static struct block *root;

/*
 * Value passed to gen_load_a() to indicate what the offset argument
 * is relative to.
 */
enum e_offrel {
      OR_PACKET,  /* relative to the beginning of the packet */
      OR_LINK,    /* relative to the beginning of the link-layer header */
      OR_MACPL,   /* relative to the end of the MAC-layer header */
      OR_NET,           /* relative to the network-layer header */
      OR_NET_NOSNAP,    /* relative to the network-layer header, with no SNAP header at the link layer */
      OR_TRAN_IPV4,     /* relative to the transport-layer header, with IPv4 network layer */
      OR_TRAN_IPV6      /* relative to the transport-layer header, with IPv6 network layer */
};

/*
 * We divy out chunks of memory rather than call malloc each time so
 * we don't have to worry about leaking memory.  It's probably
 * not a big deal if all this memory was wasted but if this ever
 * goes into a library that would probably not be a good idea.
 *
 * XXX - this *is* in a library....
 */
#define NCHUNKS 16
#define CHUNK0SIZE 1024
struct chunk {
      u_int n_left;
      void *m;
};

static struct chunk chunks[NCHUNKS];
static int cur_chunk;

static void *newchunk(u_int);
static void freechunks(void);
static inline struct block *new_block(int);
static inline struct slist *new_stmt(int);
static struct block *gen_retblk(int);
static inline void syntax(void);

static void backpatch(struct block *, struct block *);
static void merge(struct block *, struct block *);
static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
    bpf_u_int32);
static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
    bpf_u_int32, bpf_u_int32, int, bpf_int32);
static struct slist *gen_load_llrel(u_int, u_int);
static struct slist *gen_load_macplrel(u_int, u_int);
static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
static struct slist *gen_loadx_iphdrlen(void);
static struct block *gen_uncond(int);
static inline struct block *gen_true(void);
static inline struct block *gen_false(void);
static struct block *gen_ether_linktype(int);
static struct block *gen_linux_sll_linktype(int);
static struct slist *gen_load_prism_llprefixlen(void);
static struct slist *gen_load_avs_llprefixlen(void);
static struct slist *gen_load_radiotap_llprefixlen(void);
static struct slist *gen_load_ppi_llprefixlen(void);
static void insert_compute_vloffsets(struct block *);
static struct slist *gen_llprefixlen(void);
static struct slist *gen_off_macpl(void);
static int ethertype_to_ppptype(int);
static struct block *gen_linktype(int);
static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
static struct block *gen_llc_linktype(int);
static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
#ifdef INET6
static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
#endif
static struct block *gen_ahostop(const u_char *, int);
static struct block *gen_ehostop(const u_char *, int);
static struct block *gen_fhostop(const u_char *, int);
static struct block *gen_thostop(const u_char *, int);
static struct block *gen_wlanhostop(const u_char *, int);
static struct block *gen_ipfchostop(const u_char *, int);
static struct block *gen_dnhostop(bpf_u_int32, int);
static struct block *gen_mpls_linktype(int);
static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
#ifdef INET6
static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
#endif
#ifndef INET6
static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
#endif
static struct block *gen_ipfrag(void);
static struct block *gen_portatom(int, bpf_int32);
static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
#ifdef INET6
static struct block *gen_portatom6(int, bpf_int32);
static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
#endif
struct block *gen_portop(int, int, int);
static struct block *gen_port(int, int, int);
struct block *gen_portrangeop(int, int, int, int);
static struct block *gen_portrange(int, int, int, int);
#ifdef INET6
struct block *gen_portop6(int, int, int);
static struct block *gen_port6(int, int, int);
struct block *gen_portrangeop6(int, int, int, int);
static struct block *gen_portrange6(int, int, int, int);
#endif
static int lookup_proto(const char *, int);
static struct block *gen_protochain(int, int, int);
static struct block *gen_proto(int, int, int);
static struct slist *xfer_to_x(struct arth *);
static struct slist *xfer_to_a(struct arth *);
static struct block *gen_mac_multicast(int);
static struct block *gen_len(int, int);
static struct block *gen_check_802_11_data_frame(void);

static struct block *gen_ppi_dlt_check(void);
static struct block *gen_msg_abbrev(int type);

static void *
newchunk(n)
      u_int n;
{
      struct chunk *cp;
      int k;
      size_t size;

#ifndef __NetBSD__
      /* XXX Round up to nearest long. */
      n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
#else
      /* XXX Round up to structure boundary. */
      n = ALIGN(n);
#endif

      cp = &chunks[cur_chunk];
      if (n > cp->n_left) {
            ++cp, k = ++cur_chunk;
            if (k >= NCHUNKS)
                  bpf_error("out of memory");
            size = CHUNK0SIZE << k;
            cp->m = (void *)malloc(size);
            if (cp->m == NULL)
                  bpf_error("out of memory");
            memset((char *)cp->m, 0, size);
            cp->n_left = size;
            if (n > size)
                  bpf_error("out of memory");
      }
      cp->n_left -= n;
      return (void *)((char *)cp->m + cp->n_left);
}

static void
freechunks()
{
      int i;

      cur_chunk = 0;
      for (i = 0; i < NCHUNKS; ++i)
            if (chunks[i].m != NULL) {
                  free(chunks[i].m);
                  chunks[i].m = NULL;
            }
}

/*
 * A strdup whose allocations are freed after code generation is over.
 */
char *
sdup(s)
      register const char *s;
{
      int n = strlen(s) + 1;
      char *cp = newchunk(n);

      strlcpy(cp, s, n);
      return (cp);
}

static inline struct block *
new_block(code)
      int code;
{
      struct block *p;

      p = (struct block *)newchunk(sizeof(*p));
      p->s.code = code;
      p->head = p;

      return p;
}

static inline struct slist *
new_stmt(code)
      int code;
{
      struct slist *p;

      p = (struct slist *)newchunk(sizeof(*p));
      p->s.code = code;

      return p;
}

static struct block *
gen_retblk(v)
      int v;
{
      struct block *b = new_block(BPF_RET|BPF_K);

      b->s.k = v;
      return b;
}

static inline void
syntax()
{
      bpf_error("syntax error in filter expression");
}

static bpf_u_int32 netmask;
static int snaplen;
int no_optimize;

int
pcap_compile(pcap_t *p, struct bpf_program *program,
           const char *buf, int optimize, bpf_u_int32 mask)
{
      extern int n_errors;
      const char * volatile xbuf = buf;
      int len;

      no_optimize = 0;
      n_errors = 0;
      root = NULL;
      bpf_pcap = p;
      init_regs();
      if (setjmp(top_ctx)) {
            lex_cleanup();
            freechunks();
            return (-1);
      }

      netmask = mask;

      snaplen = pcap_snapshot(p);
      if (snaplen == 0) {
            snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
                   "snaplen of 0 rejects all packets");
            return -1;
      }

      lex_init(xbuf ? xbuf : "");
      init_linktype(p);
      (void)pcap_parse();

      if (n_errors)
            syntax();

      if (root == NULL)
            root = gen_retblk(snaplen);

      if (optimize && !no_optimize) {
            bpf_optimize(&root);
            if (root == NULL ||
                (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
                  bpf_error("expression rejects all packets");
      }
      program->bf_insns = icode_to_fcode(root, &len);
      program->bf_len = len;

      lex_cleanup();
      freechunks();
      return (0);
}

/*
 * entry point for using the compiler with no pcap open
 * pass in all the stuff that is needed explicitly instead.
 */
int
pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
                struct bpf_program *program,
           const char *buf, int optimize, bpf_u_int32 mask)
{
      pcap_t *p;
      int ret;

      p = pcap_open_dead(linktype_arg, snaplen_arg);
      if (p == NULL)
            return (-1);
      ret = pcap_compile(p, program, buf, optimize, mask);
      pcap_close(p);
      return (ret);
}

/*
 * Clean up a "struct bpf_program" by freeing all the memory allocated
 * in it.
 */
void
pcap_freecode(struct bpf_program *program)
{
      program->bf_len = 0;
      if (program->bf_insns != NULL) {
            free((char *)program->bf_insns);
            program->bf_insns = NULL;
      }
}

/*
 * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
 * which of the jt and jf fields has been resolved and which is a pointer
 * back to another unresolved block (or nil).  At least one of the fields
 * in each block is already resolved.
 */
static void
backpatch(list, target)
      struct block *list, *target;
{
      struct block *next;

      while (list) {
            if (!list->sense) {
                  next = JT(list);
                  JT(list) = target;
            } else {
                  next = JF(list);
                  JF(list) = target;
            }
            list = next;
      }
}

/*
 * Merge the lists in b0 and b1, using the 'sense' field to indicate
 * which of jt and jf is the link.
 */
static void
merge(b0, b1)
      struct block *b0, *b1;
{
      register struct block **p = &b0;

      /* Find end of list. */
      while (*p)
            p = !((*p)->sense) ? &JT(*p) : &JF(*p);

      /* Concatenate the lists. */
      *p = b1;
}

void
finish_parse(p)
      struct block *p;
{
      struct block *ppi_dlt_check;

      /*
       * Insert before the statements of the first (root) block any
       * statements needed to load the lengths of any variable-length
       * headers into registers.
       *
       * XXX - a fancier strategy would be to insert those before the
       * statements of all blocks that use those lengths and that
       * have no predecessors that use them, so that we only compute
       * the lengths if we need them.  There might be even better
       * approaches than that.
       *
       * However, those strategies would be more complicated, and
       * as we don't generate code to compute a length if the
       * program has no tests that use the length, and as most
       * tests will probably use those lengths, we would just
       * postpone computing the lengths so that it's not done
       * for tests that fail early, and it's not clear that's
       * worth the effort.
       */
      insert_compute_vloffsets(p->head);
      
      /*
       * For DLT_PPI captures, generate a check of the per-packet
       * DLT value to make sure it's DLT_IEEE802_11.
       */
      ppi_dlt_check = gen_ppi_dlt_check();
      if (ppi_dlt_check != NULL)
            gen_and(ppi_dlt_check, p);

      backpatch(p, gen_retblk(snaplen));
      p->sense = !p->sense;
      backpatch(p, gen_retblk(0));
      root = p->head;
}

void
gen_and(b0, b1)
      struct block *b0, *b1;
{
      backpatch(b0, b1->head);
      b0->sense = !b0->sense;
      b1->sense = !b1->sense;
      merge(b1, b0);
      b1->sense = !b1->sense;
      b1->head = b0->head;
}

void
gen_or(b0, b1)
      struct block *b0, *b1;
{
      b0->sense = !b0->sense;
      backpatch(b0, b1->head);
      b0->sense = !b0->sense;
      merge(b1, b0);
      b1->head = b0->head;
}

void
gen_not(b)
      struct block *b;
{
      b->sense = !b->sense;
}

static struct block *
gen_cmp(offrel, offset, size, v)
      enum e_offrel offrel;
      u_int offset, size;
      bpf_int32 v;
{
      return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
}

static struct block *
gen_cmp_gt(offrel, offset, size, v)
      enum e_offrel offrel;
      u_int offset, size;
      bpf_int32 v;
{
      return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
}

static struct block *
gen_cmp_ge(offrel, offset, size, v)
      enum e_offrel offrel;
      u_int offset, size;
      bpf_int32 v;
{
      return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
}

static struct block *
gen_cmp_lt(offrel, offset, size, v)
      enum e_offrel offrel;
      u_int offset, size;
      bpf_int32 v;
{
      return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
}

static struct block *
gen_cmp_le(offrel, offset, size, v)
      enum e_offrel offrel;
      u_int offset, size;
      bpf_int32 v;
{
      return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
}

static struct block *
gen_mcmp(offrel, offset, size, v, mask)
      enum e_offrel offrel;
      u_int offset, size;
      bpf_int32 v;
      bpf_u_int32 mask;
{
      return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
}

static struct block *
gen_bcmp(offrel, offset, size, v)
      enum e_offrel offrel;
      register u_int offset, size;
      register const u_char *v;
{
      register struct block *b, *tmp;

      b = NULL;
      while (size >= 4) {
            register const u_char *p = &v[size - 4];
            bpf_int32 w = ((bpf_int32)p[0] << 24) |
                ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];

            tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
            if (b != NULL)
                  gen_and(b, tmp);
            b = tmp;
            size -= 4;
      }
      while (size >= 2) {
            register const u_char *p = &v[size - 2];
            bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];

            tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
            if (b != NULL)
                  gen_and(b, tmp);
            b = tmp;
            size -= 2;
      }
      if (size > 0) {
            tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
            if (b != NULL)
                  gen_and(b, tmp);
            b = tmp;
      }
      return b;
}

/*
 * AND the field of size "size" at offset "offset" relative to the header
 * specified by "offrel" with "mask", and compare it with the value "v"
 * with the test specified by "jtype"; if "reverse" is true, the test
 * should test the opposite of "jtype".
 */
static struct block *
gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
      enum e_offrel offrel;
      bpf_int32 v;
      bpf_u_int32 offset, size, mask, jtype;
      int reverse;
{
      struct slist *s, *s2;
      struct block *b;

      s = gen_load_a(offrel, offset, size);

      if (mask != 0xffffffff) {
            s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
            s2->s.k = mask;
            sappend(s, s2);
      }

      b = new_block(JMP(jtype));
      b->stmts = s;
      b->s.k = v;
      if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
            gen_not(b);
      return b;
}

/*
 * Various code constructs need to know the layout of the data link
 * layer.  These variables give the necessary offsets from the beginning
 * of the packet data.
 */

/*
 * This is the offset of the beginning of the link-layer header from
 * the beginning of the raw packet data.
 *
 * It's usually 0, except for 802.11 with a fixed-length radio header.
 * (For 802.11 with a variable-length radio header, we have to generate
 * code to compute that offset; off_ll is 0 in that case.)
 */
static u_int off_ll;

/*
 * If there's a variable-length header preceding the link-layer header,
 * "reg_off_ll" is the register number for a register containing the
 * length of that header, and therefore the offset of the link-layer
 * header from the beginning of the raw packet data.  Otherwise,
 * "reg_off_ll" is -1.
 */
static int reg_off_ll;

/*
 * This is the offset of the beginning of the MAC-layer header from
 * the beginning of the link-layer header.
 * It's usually 0, except for ATM LANE, where it's the offset, relative
 * to the beginning of the raw packet data, of the Ethernet header.
 */
static u_int off_mac;

/*
 * This is the offset of the beginning of the MAC-layer payload,
 * from the beginning of the raw packet data.
 *
 * I.e., it's the sum of the length of the link-layer header (without,
 * for example, any 802.2 LLC header, so it's the MAC-layer
 * portion of that header), plus any prefix preceding the
 * link-layer header.
 */
static u_int off_macpl;

/*
 * This is 1 if the offset of the beginning of the MAC-layer payload
 * from the beginning of the link-layer header is variable-length.
 */
static int off_macpl_is_variable;

/*
 * If the link layer has variable_length headers, "reg_off_macpl"
 * is the register number for a register containing the length of the
 * link-layer header plus the length of any variable-length header
 * preceding the link-layer header.  Otherwise, "reg_off_macpl"
 * is -1.
 */
static int reg_off_macpl;

/*
 * "off_linktype" is the offset to information in the link-layer header
 * giving the packet type.  This offset is relative to the beginning
 * of the link-layer header (i.e., it doesn't include off_ll).
 *
 * For Ethernet, it's the offset of the Ethernet type field.
 *
 * For link-layer types that always use 802.2 headers, it's the
 * offset of the LLC header.
 *
 * For PPP, it's the offset of the PPP type field.
 *
 * For Cisco HDLC, it's the offset of the CHDLC type field.
 *
 * For BSD loopback, it's the offset of the AF_ value.
 *
 * For Linux cooked sockets, it's the offset of the type field.
 *
 * It's set to -1 for no encapsulation, in which case, IP is assumed.
 */
static u_int off_linktype;

/*
 * TRUE if "pppoes" appeared in the filter; it causes link-layer type
 * checks to check the PPP header, assumed to follow a LAN-style link-
 * layer header and a PPPoE session header.
 */
static int is_pppoes = 0;

/*
 * TRUE if the link layer includes an ATM pseudo-header.
 */
static int is_atm = 0;

/*
 * TRUE if "lane" appeared in the filter; it causes us to generate
 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
 */
static int is_lane = 0;

/*
 * These are offsets for the ATM pseudo-header.
 */
static u_int off_vpi;
static u_int off_vci;
static u_int off_proto;

/*
 * These are offsets for the MTP2 fields.
 */
static u_int off_li;

/*
 * These are offsets for the MTP3 fields.
 */
static u_int off_sio;
static u_int off_opc;
static u_int off_dpc;
static u_int off_sls;

/*
 * This is the offset of the first byte after the ATM pseudo_header,
 * or -1 if there is no ATM pseudo-header.
 */
static u_int off_payload;

/*
 * These are offsets to the beginning of the network-layer header.
 * They are relative to the beginning of the MAC-layer payload (i.e.,
 * they don't include off_ll or off_macpl).
 *
 * If the link layer never uses 802.2 LLC:
 *
 *    "off_nl" and "off_nl_nosnap" are the same.
 *
 * If the link layer always uses 802.2 LLC:
 *
 *    "off_nl" is the offset if there's a SNAP header following
 *    the 802.2 header;
 *
 *    "off_nl_nosnap" is the offset if there's no SNAP header.
 *
 * If the link layer is Ethernet:
 *
 *    "off_nl" is the offset if the packet is an Ethernet II packet
 *    (we assume no 802.3+802.2+SNAP);
 *
 *    "off_nl_nosnap" is the offset if the packet is an 802.3 packet
 *    with an 802.2 header following it.
 */
static u_int off_nl;
static u_int off_nl_nosnap;

static int linktype;

static void
init_linktype(p)
      pcap_t *p;
{
      linktype = pcap_datalink(p);
#ifdef PCAP_FDDIPAD
      pcap_fddipad = p->fddipad;
#endif

      /*
       * Assume it's not raw ATM with a pseudo-header, for now.
       */
      off_mac = 0;
      is_atm = 0;
      is_lane = 0;
      off_vpi = -1;
      off_vci = -1;
      off_proto = -1;
      off_payload = -1;

      /*
       * And that we're not doing PPPoE.
       */
      is_pppoes = 0;

      /*
       * And assume we're not doing SS7.
       */
      off_li = -1;
      off_sio = -1;
      off_opc = -1;
      off_dpc = -1;
      off_sls = -1;

      /*
       * Also assume it's not 802.11.
       */
      off_ll = 0;
      off_macpl = 0;
      off_macpl_is_variable = 0;

      orig_linktype = -1;
      orig_nl = -1;
        label_stack_depth = 0;

      reg_off_ll = -1;
      reg_off_macpl = -1;

      switch (linktype) {

      case DLT_ARCNET:
            off_linktype = 2;
            off_macpl = 6;
            off_nl = 0;       /* XXX in reality, variable! */
            off_nl_nosnap = 0;      /* no 802.2 LLC */
            return;

      case DLT_ARCNET_LINUX:
            off_linktype = 4;
            off_macpl = 8;
            off_nl = 0;       /* XXX in reality, variable! */
            off_nl_nosnap = 0;      /* no 802.2 LLC */
            return;

      case DLT_EN10MB:
            off_linktype = 12;
            off_macpl = 14;         /* Ethernet header length */
            off_nl = 0;       /* Ethernet II */
            off_nl_nosnap = 3;      /* 802.3+802.2 */
            return;

      case DLT_SLIP:
            /*
             * SLIP doesn't have a link level type.  The 16 byte
             * header is hacked into our SLIP driver.
             */
            off_linktype = -1;
            off_macpl = 16;
            off_nl = 0;
            off_nl_nosnap = 0;      /* no 802.2 LLC */
            return;

      case DLT_SLIP_BSDOS:
            /* XXX this may be the same as the DLT_PPP_BSDOS case */
            off_linktype = -1;
            /* XXX end */
            off_macpl = 24;
            off_nl = 0;
            off_nl_nosnap = 0;      /* no 802.2 LLC */
            return;

      case DLT_NULL:
      case DLT_LOOP:
            off_linktype = 0;
            off_macpl = 4;
            off_nl = 0;
            off_nl_nosnap = 0;      /* no 802.2 LLC */
            return;

      case DLT_ENC:
            off_linktype = 0;
            off_macpl = 12;
            off_nl = 0;
            off_nl_nosnap = 0;      /* no 802.2 LLC */
            return;

      case DLT_PPP:
      case DLT_PPP_PPPD:
      case DLT_C_HDLC:        /* BSD/OS Cisco HDLC */
      case DLT_PPP_SERIAL:          /* NetBSD sync/async serial PPP */
            off_linktype = 2;
            off_macpl = 4;
            off_nl = 0;
            off_nl_nosnap = 0;      /* no 802.2 LLC */
            return;

      case DLT_PPP_ETHER:
            /*
             * This does no include the Ethernet header, and
             * only covers session state.
             */
            off_linktype = 6;
            off_macpl = 8;
            off_nl = 0;
            off_nl_nosnap = 0;      /* no 802.2 LLC */
            return;

      case DLT_PPP_BSDOS:
            off_linktype = 5;
            off_macpl = 24;
            off_nl = 0;
            off_nl_nosnap = 0;      /* no 802.2 LLC */
            return;

      case DLT_FDDI:
            /*
             * FDDI doesn't really have a link-level type field.
             * We set "off_linktype" to the offset of the LLC header.
             *
             * To check for Ethernet types, we assume that SSAP = SNAP
             * is being used and pick out the encapsulated Ethernet type.
             * XXX - should we generate code to check for SNAP?
             */
            off_linktype = 13;
#ifdef PCAP_FDDIPAD
            off_linktype += pcap_fddipad;
#endif
            off_macpl = 13;         /* FDDI MAC header length */
#ifdef PCAP_FDDIPAD
            off_macpl += pcap_fddipad;
#endif
            off_nl = 8;       /* 802.2+SNAP */
            off_nl_nosnap = 3;      /* 802.2 */
            return;

      case DLT_IEEE802:
            /*
             * Token Ring doesn't really have a link-level type field.
             * We set "off_linktype" to the offset of the LLC header.
             *
             * To check for Ethernet types, we assume that SSAP = SNAP
             * is being used and pick out the encapsulated Ethernet type.
             * XXX - should we generate code to check for SNAP?
             *
             * XXX - the header is actually variable-length.
             * Some various Linux patched versions gave 38
             * as "off_linktype" and 40 as "off_nl"; however,
             * if a token ring packet has *no* routing
             * information, i.e. is not source-routed, the correct
             * values are 20 and 22, as they are in the vanilla code.
             *
             * A packet is source-routed iff the uppermost bit
             * of the first byte of the source address, at an
             * offset of 8, has the uppermost bit set.  If the
             * packet is source-routed, the total number of bytes
             * of routing information is 2 plus bits 0x1F00 of
             * the 16-bit value at an offset of 14 (shifted right
             * 8 - figure out which byte that is).
             */
            off_linktype = 14;
            off_macpl = 14;         /* Token Ring MAC header length */
            off_nl = 8;       /* 802.2+SNAP */
            off_nl_nosnap = 3;      /* 802.2 */
            return;

      case DLT_IEEE802_11:
      case DLT_PRISM_HEADER:
      case DLT_IEEE802_11_RADIO_AVS:
      case DLT_IEEE802_11_RADIO:
            /*
             * 802.11 doesn't really have a link-level type field.
             * We set "off_linktype" to the offset of the LLC header.
             *
             * To check for Ethernet types, we assume that SSAP = SNAP
             * is being used and pick out the encapsulated Ethernet type.
             * XXX - should we generate code to check for SNAP?
             *
             * We also handle variable-length radio headers here.
             * The Prism header is in theory variable-length, but in
             * practice it's always 144 bytes long.  However, some
             * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
             * sometimes or always supply an AVS header, so we
             * have to check whether the radio header is a Prism
             * header or an AVS header, so, in practice, it's
             * variable-length.
             */
            off_linktype = 24;
            off_macpl = 0;          /* link-layer header is variable-length */
            off_macpl_is_variable = 1;
            off_nl = 8;       /* 802.2+SNAP */
            off_nl_nosnap = 3;      /* 802.2 */
            return;

      case DLT_PPI:
            /* 
             * At the moment we treat PPI the same way that we treat
             * normal Radiotap encoded packets. The difference is in
             * the function that generates the code at the beginning
             * to compute the header length.  Since this code generator
             * of PPI supports bare 802.11 encapsulation only (i.e.
             * the encapsulated DLT should be DLT_IEEE802_11) we
             * generate code to check for this too.
             */
            off_linktype = 24;
            off_macpl = 0;          /* link-layer header is variable-length */
            off_macpl_is_variable = 1;
            off_nl = 8;       /* 802.2+SNAP */
            off_nl_nosnap = 3;      /* 802.2 */
            return;

      case DLT_ATM_RFC1483:
      case DLT_ATM_CLIP:      /* Linux ATM defines this */
            /*
             * assume routed, non-ISO PDUs
             * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
             *
             * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
             * or PPP with the PPP NLPID (e.g., PPPoA)?  The
             * latter would presumably be treated the way PPPoE
             * should be, so you can do "pppoe and udp port 2049"
             * or "pppoa and tcp port 80" and have it check for
             * PPPo{A,E} and a PPP protocol of IP and....
             */
            off_linktype = 0;
            off_macpl = 0;          /* packet begins with LLC header */
            off_nl = 8;       /* 802.2+SNAP */
            off_nl_nosnap = 3;      /* 802.2 */
            return;

      case DLT_SUNATM:
            /*
             * Full Frontal ATM; you get AALn PDUs with an ATM
             * pseudo-header.
             */
            is_atm = 1;
            off_vpi = SUNATM_VPI_POS;
            off_vci = SUNATM_VCI_POS;
            off_proto = PROTO_POS;
            off_mac = -1;     /* assume LLC-encapsulated, so no MAC-layer header */
            off_payload = SUNATM_PKT_BEGIN_POS;
            off_linktype = off_payload;
            off_macpl = off_payload;      /* if LLC-encapsulated */
            off_nl = 8;       /* 802.2+SNAP */
            off_nl_nosnap = 3;      /* 802.2 */
            return;

      case DLT_RAW:
            off_linktype = -1;
            off_macpl = 0;
            off_nl = 0;
            off_nl_nosnap = 0;      /* no 802.2 LLC */
            return;

      case DLT_LINUX_SLL:     /* fake header for Linux cooked socket */
            off_linktype = 14;
            off_macpl = 16;
            off_nl = 0;
            off_nl_nosnap = 0;      /* no 802.2 LLC */
            return;

      case DLT_LTALK:
            /*
             * LocalTalk does have a 1-byte type field in the LLAP header,
             * but really it just indicates whether there is a "short" or
             * "long" DDP packet following.
             */
            off_linktype = -1;
            off_macpl = 0;
            off_nl = 0;
            off_nl_nosnap = 0;      /* no 802.2 LLC */
            return;

      case DLT_IP_OVER_FC:
            /*
             * RFC 2625 IP-over-Fibre-Channel doesn't really have a
             * link-level type field.  We set "off_linktype" to the
             * offset of the LLC header.
             *
             * To check for Ethernet types, we assume that SSAP = SNAP
             * is being used and pick out the encapsulated Ethernet type.
             * XXX - should we generate code to check for SNAP? RFC
             * 2625 says SNAP should be used.
             */
            off_linktype = 16;
            off_macpl = 16;
            off_nl = 8;       /* 802.2+SNAP */
            off_nl_nosnap = 3;      /* 802.2 */
            return;

      case DLT_FRELAY:
            /*
             * XXX - we should set this to handle SNAP-encapsulated
             * frames (NLPID of 0x80).
             */
            off_linktype = -1;
            off_macpl = 0;
            off_nl = 0;
            off_nl_nosnap = 0;      /* no 802.2 LLC */
            return;

                /*
                 * the only BPF-interesting FRF.16 frames are non-control frames;
                 * Frame Relay has a variable length link-layer
                 * so lets start with offset 4 for now and increments later on (FIXME);
                 */
      case DLT_MFR:
            off_linktype = -1;
            off_macpl = 0;
            off_nl = 4;
            off_nl_nosnap = 0;      /* XXX - for now -> no 802.2 LLC */
            return;

      case DLT_APPLE_IP_OVER_IEEE1394:
            off_linktype = 16;
            off_macpl = 18;
            off_nl = 0;
            off_nl_nosnap = 0;      /* no 802.2 LLC */
            return;

      case DLT_LINUX_IRDA:
            /*
             * Currently, only raw "link[N:M]" filtering is supported.
             */
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_DOCSIS:
            /*
             * Currently, only raw "link[N:M]" filtering is supported.
             */
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_SYMANTEC_FIREWALL:
            off_linktype = 6;
            off_macpl = 44;
            off_nl = 0;       /* Ethernet II */
            off_nl_nosnap = 0;      /* XXX - what does it do with 802.3 packets? */
            return;

#ifdef HAVE_NET_PFVAR_H
      case DLT_PFLOG:
            off_linktype = 0;
            off_macpl = PFLOG_HDRLEN;
            off_nl = 0;
            off_nl_nosnap = 0;      /* no 802.2 LLC */
            return;
#endif

        case DLT_JUNIPER_MFR:
        case DLT_JUNIPER_MLFR:
        case DLT_JUNIPER_MLPPP:
        case DLT_JUNIPER_PPP:
        case DLT_JUNIPER_CHDLC:
        case DLT_JUNIPER_FRELAY:
                off_linktype = 4;
            off_macpl = 4;
            off_nl = 0;
            off_nl_nosnap = -1;     /* no 802.2 LLC */
                return;

      case DLT_JUNIPER_ATM1:
            off_linktype = 4; /* in reality variable between 4-8 */
            off_macpl = 4;    /* in reality variable between 4-8 */
            off_nl = 0;
            off_nl_nosnap = 10;
            return;

      case DLT_JUNIPER_ATM2:
            off_linktype = 8; /* in reality variable between 8-12 */
            off_macpl = 8;    /* in reality variable between 8-12 */
            off_nl = 0;
            off_nl_nosnap = 10;
            return;

            /* frames captured on a Juniper PPPoE service PIC
             * contain raw ethernet frames */
      case DLT_JUNIPER_PPPOE:
        case DLT_JUNIPER_ETHER:
            off_macpl = 14;
            off_linktype = 16;
            off_nl = 18;            /* Ethernet II */
            off_nl_nosnap = 21;     /* 802.3+802.2 */
            return;

      case DLT_JUNIPER_PPPOE_ATM:
            off_linktype = 4;
            off_macpl = 6;
            off_nl = 0;
            off_nl_nosnap = -1;     /* no 802.2 LLC */
            return;

      case DLT_JUNIPER_GGSN:
            off_linktype = 6;
            off_macpl = 12;
            off_nl = 0;
            off_nl_nosnap = -1;     /* no 802.2 LLC */
            return;

      case DLT_JUNIPER_ES:
            off_linktype = 6;
            off_macpl = -1;         /* not really a network layer but raw IP addresses */
            off_nl = -1;            /* not really a network layer but raw IP addresses */
            off_nl_nosnap = -1;     /* no 802.2 LLC */
            return;

      case DLT_JUNIPER_MONITOR:
            off_linktype = 12;
            off_macpl = 12;
            off_nl = 0;       /* raw IP/IP6 header */
            off_nl_nosnap = -1;     /* no 802.2 LLC */
            return;

      case DLT_JUNIPER_SERVICES:
            off_linktype = 12;
            off_macpl = -1;         /* L3 proto location dep. on cookie type */
            off_nl = -1;            /* L3 proto location dep. on cookie type */
            off_nl_nosnap = -1;     /* no 802.2 LLC */
            return;

      case DLT_JUNIPER_VP:
            off_linktype = 18;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_JUNIPER_ST:
            off_linktype = 18;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_JUNIPER_ISM:
            off_linktype = 8;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_MTP2:
            off_li = 2;
            off_sio = 3;
            off_opc = 4;
            off_dpc = 4;
            off_sls = 7;
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_MTP2_WITH_PHDR:
            off_li = 6;
            off_sio = 7;
            off_opc = 8;
            off_dpc = 8;
            off_sls = 11;
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_ERF:
            off_li = 22;
            off_sio = 23;
            off_opc = 24;
            off_dpc = 24;
            off_sls = 27;
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

#ifdef DLT_PFSYNC
      case DLT_PFSYNC:
            off_linktype = -1;
            off_macpl = 4;
            off_nl = 0;
            off_nl_nosnap = 0;
            return;
#endif

      case DLT_LINUX_LAPD:
            /*
             * Currently, only raw "link[N:M]" filtering is supported.
             */
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_USB:
            /*
             * Currently, only raw "link[N:M]" filtering is supported.
             */
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_BLUETOOTH_HCI_H4:
            /*
             * Currently, only raw "link[N:M]" filtering is supported.
             */
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_USB_LINUX:
            /*
             * Currently, only raw "link[N:M]" filtering is supported.
             */
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_CAN20B:
            /*
             * Currently, only raw "link[N:M]" filtering is supported.
             */
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_IEEE802_15_4_LINUX:
            /*
             * Currently, only raw "link[N:M]" filtering is supported.
             */
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_IEEE802_16_MAC_CPS_RADIO:
            /*
             * Currently, only raw "link[N:M]" filtering is supported.
             */
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_IEEE802_15_4:
            /*
             * Currently, only raw "link[N:M]" filtering is supported.
             */
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_SITA:
            /*
             * Currently, only raw "link[N:M]" filtering is supported.
             */
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_RAIF1:
            /*
             * Currently, only raw "link[N:M]" filtering is supported.
             */
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_IPMB:
            /*
             * Currently, only raw "link[N:M]" filtering is supported.
             */
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
            /*
             * Currently, only raw "link[N:M]" filtering is supported.
             */
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;

      case DLT_AX25_KISS:
            /*
             * Currently, only raw "link[N:M]" filtering is supported.
             */
            off_linktype = -1;      /* variable, min 15, max 71 steps of 7 */
            off_macpl = -1;
            off_nl = -1;            /* variable, min 16, max 71 steps of 7 */
            off_nl_nosnap = -1;     /* no 802.2 LLC */
            off_mac = 1;            /* step over the kiss length byte */
            return;

      case DLT_IEEE802_15_4_NONASK_PHY:
            /*
             * Currently, only raw "link[N:M]" filtering is supported.
             */
            off_linktype = -1;
            off_macpl = -1;
            off_nl = -1;
            off_nl_nosnap = -1;
            return;
      }
      bpf_error("unknown data link type %d", linktype);
      /* NOTREACHED */
}

/*
 * Load a value relative to the beginning of the link-layer header.
 * The link-layer header doesn't necessarily begin at the beginning
 * of the packet data; there might be a variable-length prefix containing
 * radio information.
 */
static struct slist *
gen_load_llrel(offset, size)
      u_int offset, size;
{
      struct slist *s, *s2;

      s = gen_llprefixlen();

      /*
       * If "s" is non-null, it has code to arrange that the X register
       * contains the length of the prefix preceding the link-layer
       * header.
       *
       * Otherwise, the length of the prefix preceding the link-layer
       * header is "off_ll".
       */
      if (s != NULL) {
            /*
             * There's a variable-length prefix preceding the
             * link-layer header.  "s" points to a list of statements
             * that put the length of that prefix into the X register.
             * do an indirect load, to use the X register as an offset.
             */
            s2 = new_stmt(BPF_LD|BPF_IND|size);
            s2->s.k = offset;
            sappend(s, s2);
      } else {
            /*
             * There is no variable-length header preceding the
             * link-layer header; add in off_ll, which, if there's
             * a fixed-length header preceding the link-layer header,
             * is the length of that header.
             */
            s = new_stmt(BPF_LD|BPF_ABS|size);
            s->s.k = offset + off_ll;
      }
      return s;
}

/*
 * Load a value relative to the beginning of the MAC-layer payload.
 */
static struct slist *
gen_load_macplrel(offset, size)
      u_int offset, size;
{
      struct slist *s, *s2;

      s = gen_off_macpl();

      /*
       * If s is non-null, the offset of the MAC-layer payload is
       * variable, and s points to a list of instructions that
       * arrange that the X register contains that offset.
       *
       * Otherwise, the offset of the MAC-layer payload is constant,
       * and is in off_macpl.
       */
      if (s != NULL) {
            /*
             * The offset of the MAC-layer payload is in the X
             * register.  Do an indirect load, to use the X register
             * as an offset.
             */
            s2 = new_stmt(BPF_LD|BPF_IND|size);
            s2->s.k = offset;
            sappend(s, s2);
      } else {
            /*
             * The offset of the MAC-layer payload is constant,
             * and is in off_macpl; load the value at that offset
             * plus the specified offset.
             */
            s = new_stmt(BPF_LD|BPF_ABS|size);
            s->s.k = off_macpl + offset;
      }
      return s;
}

/*
 * Load a value relative to the beginning of the specified header.
 */
static struct slist *
gen_load_a(offrel, offset, size)
      enum e_offrel offrel;
      u_int offset, size;
{
      struct slist *s, *s2;

      switch (offrel) {

      case OR_PACKET:
                s = new_stmt(BPF_LD|BPF_ABS|size);
                s->s.k = offset;
            break;

      case OR_LINK:
            s = gen_load_llrel(offset, size);
            break;

      case OR_MACPL:
            s = gen_load_macplrel(offset, size);
            break;

      case OR_NET:
            s = gen_load_macplrel(off_nl + offset, size);
            break;

      case OR_NET_NOSNAP:
            s = gen_load_macplrel(off_nl_nosnap + offset, size);
            break;

      case OR_TRAN_IPV4:
            /*
             * Load the X register with the length of the IPv4 header
             * (plus the offset of the link-layer header, if it's
             * preceded by a variable-length header such as a radio
             * header), in bytes.
             */
            s = gen_loadx_iphdrlen();

            /*
             * Load the item at {offset of the MAC-layer payload} +
             * {offset, relative to the start of the MAC-layer
             * paylod, of the IPv4 header} + {length of the IPv4 header} +
             * {specified offset}.
             *
             * (If the offset of the MAC-layer payload is variable,
             * it's included in the value in the X register, and
             * off_macpl is 0.)
             */
            s2 = new_stmt(BPF_LD|BPF_IND|size);
            s2->s.k = off_macpl + off_nl + offset;
            sappend(s, s2);
            break;

      case OR_TRAN_IPV6:
            s = gen_load_macplrel(off_nl + 40 + offset, size);
            break;

      default:
            abort();
            return NULL;
      }
      return s;
}

/*
 * Generate code to load into the X register the sum of the length of
 * the IPv4 header and any variable-length header preceding the link-layer
 * header.
 */
static struct slist *
gen_loadx_iphdrlen()
{
      struct slist *s, *s2;

      s = gen_off_macpl();
      if (s != NULL) {
            /*
             * There's a variable-length prefix preceding the
             * link-layer header, or the link-layer header is itself
             * variable-length.  "s" points to a list of statements
             * that put the offset of the MAC-layer payload into
             * the X register.
             *
             * The 4*([k]&0xf) addressing mode can't be used, as we
             * don't have a constant offset, so we have to load the
             * value in question into the A register and add to it
             * the value from the X register.
             */
            s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
            s2->s.k = off_nl;
            sappend(s, s2);
            s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
            s2->s.k = 0xf;
            sappend(s, s2);
            s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
            s2->s.k = 2;
            sappend(s, s2);

            /*
             * The A register now contains the length of the
             * IP header.  We need to add to it the offset of
             * the MAC-layer payload, which is still in the X
             * register, and move the result into the X register.
             */
            sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
            sappend(s, new_stmt(BPF_MISC|BPF_TAX));
      } else {
            /*
             * There is no variable-length header preceding the
             * link-layer header, and the link-layer header is
             * fixed-length; load the length of the IPv4 header,
             * which is at an offset of off_nl from the beginning
             * of the MAC-layer payload, and thus at an offset
             * of off_mac_pl + off_nl from the beginning of the
             * raw packet data.
             */
            s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
            s->s.k = off_macpl + off_nl;
      }
      return s;
}

static struct block *
gen_uncond(rsense)
      int rsense;
{
      struct block *b;
      struct slist *s;

      s = new_stmt(BPF_LD|BPF_IMM);
      s->s.k = !rsense;
      b = new_block(JMP(BPF_JEQ));
      b->stmts = s;

      return b;
}

static inline struct block *
gen_true()
{
      return gen_uncond(1);
}

static inline struct block *
gen_false()
{
      return gen_uncond(0);
}

/*
 * Byte-swap a 32-bit number.
 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
 * big-endian platforms.)
 */
#define     SWAPLONG(y) \
((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))

/*
 * Generate code to match a particular packet type.
 *
 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
 * value, if <= ETHERMTU.  We use that to determine whether to
 * match the type/length field or to check the type/length field for
 * a value <= ETHERMTU to see whether it's a type field and then do
 * the appropriate test.
 */
static struct block *
gen_ether_linktype(proto)
      register int proto;
{
      struct block *b0, *b1;

      switch (proto) {

      case LLCSAP_ISONS:
      case LLCSAP_IP:
      case LLCSAP_NETBEUI:
            /*
             * OSI protocols and NetBEUI always use 802.2 encapsulation,
             * so we check the DSAP and SSAP.
             *
             * LLCSAP_IP checks for IP-over-802.2, rather
             * than IP-over-Ethernet or IP-over-SNAP.
             *
             * XXX - should we check both the DSAP and the
             * SSAP, like this, or should we check just the
             * DSAP, as we do for other types <= ETHERMTU
             * (i.e., other SAP values)?
             */
            b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
            gen_not(b0);
            b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
                       ((proto << 8) | proto));
            gen_and(b0, b1);
            return b1;

      case LLCSAP_IPX:
            /*
             * Check for;
             *
             *    Ethernet_II frames, which are Ethernet
             *    frames with a frame type of ETHERTYPE_IPX;
             *
             *    Ethernet_802.3 frames, which are 802.3
             *    frames (i.e., the type/length field is
             *    a length field, <= ETHERMTU, rather than
             *    a type field) with the first two bytes
             *    after the Ethernet/802.3 header being
             *    0xFFFF;
             *
             *    Ethernet_802.2 frames, which are 802.3
             *    frames with an 802.2 LLC header and
             *    with the IPX LSAP as the DSAP in the LLC
             *    header;
             *
             *    Ethernet_SNAP frames, which are 802.3
             *    frames with an LLC header and a SNAP
             *    header and with an OUI of 0x000000
             *    (encapsulated Ethernet) and a protocol
             *    ID of ETHERTYPE_IPX in the SNAP header.
             *
             * XXX - should we generate the same code both
             * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
             */

            /*
             * This generates code to check both for the
             * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
             */
            b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
            b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)0xFFFF);
            gen_or(b0, b1);

            /*
             * Now we add code to check for SNAP frames with
             * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
             */
            b0 = gen_snap(0x000000, ETHERTYPE_IPX);
            gen_or(b0, b1);

            /*
             * Now we generate code to check for 802.3
             * frames in general.
             */
            b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
            gen_not(b0);

            /*
             * Now add the check for 802.3 frames before the
             * check for Ethernet_802.2 and Ethernet_802.3,
             * as those checks should only be done on 802.3
             * frames, not on Ethernet frames.
             */
            gen_and(b0, b1);

            /*
             * Now add the check for Ethernet_II frames, and
             * do that before checking for the other frame
             * types.
             */
            b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
                (bpf_int32)ETHERTYPE_IPX);
            gen_or(b0, b1);
            return b1;

      case ETHERTYPE_ATALK:
      case ETHERTYPE_AARP:
            /*
             * EtherTalk (AppleTalk protocols on Ethernet link
             * layer) may use 802.2 encapsulation.
             */

            /*
             * Check for 802.2 encapsulation (EtherTalk phase 2?);
             * we check for an Ethernet type field less than
             * 1500, which means it's an 802.3 length field.
             */
            b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
            gen_not(b0);

            /*
             * 802.2-encapsulated ETHERTYPE_ATALK packets are
             * SNAP packets with an organization code of
             * 0x080007 (Apple, for Appletalk) and a protocol
             * type of ETHERTYPE_ATALK (Appletalk).
             *
             * 802.2-encapsulated ETHERTYPE_AARP packets are
             * SNAP packets with an organization code of
             * 0x000000 (encapsulated Ethernet) and a protocol
             * type of ETHERTYPE_AARP (Appletalk ARP).
             */
            if (proto == ETHERTYPE_ATALK)
                  b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
            else  /* proto == ETHERTYPE_AARP */
                  b1 = gen_snap(0x000000, ETHERTYPE_AARP);
            gen_and(b0, b1);

            /*
             * Check for Ethernet encapsulation (Ethertalk
             * phase 1?); we just check for the Ethernet
             * protocol type.
             */
            b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);

            gen_or(b0, b1);
            return b1;

      default:
            if (proto <= ETHERMTU) {
                  /*
                   * This is an LLC SAP value, so the frames
                   * that match would be 802.2 frames.
                   * Check that the frame is an 802.2 frame
                   * (i.e., that the length/type field is
                   * a length field, <= ETHERMTU) and
                   * then check the DSAP.
                   */
                  b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
                  gen_not(b0);
                  b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
                      (bpf_int32)proto);
                  gen_and(b0, b1);
                  return b1;
            } else {
                  /*
                   * This is an Ethernet type, so compare
                   * the length/type field with it (if
                   * the frame is an 802.2 frame, the length
                   * field will be <= ETHERMTU, and, as
                   * "proto" is > ETHERMTU, this test
                   * will fail and the frame won't match,
                   * which is what we want).
                   */
                  return gen_cmp(OR_LINK, off_linktype, BPF_H,
                      (bpf_int32)proto);
            }
      }
}

/*
 * Generate code to match a particular packet type.
 *
 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
 * value, if <= ETHERMTU.  We use that to determine whether to
 * match the type field or to check the type field for the special
 * LINUX_SLL_P_802_2 value and then do the appropriate test.
 */
static struct block *
gen_linux_sll_linktype(proto)
      register int proto;
{
      struct block *b0, *b1;

      switch (proto) {

      case LLCSAP_ISONS:
      case LLCSAP_IP:
      case LLCSAP_NETBEUI:
            /*
             * OSI protocols and NetBEUI always use 802.2 encapsulation,
             * so we check the DSAP and SSAP.
             *
             * LLCSAP_IP checks for IP-over-802.2, rather
             * than IP-over-Ethernet or IP-over-SNAP.
             *
             * XXX - should we check both the DSAP and the
             * SSAP, like this, or should we check just the
             * DSAP, as we do for other types <= ETHERMTU
             * (i.e., other SAP values)?
             */
            b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
            b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
                       ((proto << 8) | proto));
            gen_and(b0, b1);
            return b1;

      case LLCSAP_IPX:
            /*
             *    Ethernet_II frames, which are Ethernet
             *    frames with a frame type of ETHERTYPE_IPX;
             *
             *    Ethernet_802.3 frames, which have a frame
             *    type of LINUX_SLL_P_802_3;
             *
             *    Ethernet_802.2 frames, which are 802.3
             *    frames with an 802.2 LLC header (i.e, have
             *    a frame type of LINUX_SLL_P_802_2) and
             *    with the IPX LSAP as the DSAP in the LLC
             *    header;
             *
             *    Ethernet_SNAP frames, which are 802.3
             *    frames with an LLC header and a SNAP
             *    header and with an OUI of 0x000000
             *    (encapsulated Ethernet) and a protocol
             *    ID of ETHERTYPE_IPX in the SNAP header.
             *
             * First, do the checks on LINUX_SLL_P_802_2
             * frames; generate the check for either
             * Ethernet_802.2 or Ethernet_SNAP frames, and
             * then put a check for LINUX_SLL_P_802_2 frames
             * before it.
             */
            b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
            b1 = gen_snap(0x000000, ETHERTYPE_IPX);
            gen_or(b0, b1);
            b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
            gen_and(b0, b1);

            /*
             * Now check for 802.3 frames and OR that with
             * the previous test.
             */
            b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
            gen_or(b0, b1);

            /*
             * Now add the check for Ethernet_II frames, and
             * do that before checking for the other frame
             * types.
             */
            b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
                (bpf_int32)ETHERTYPE_IPX);
            gen_or(b0, b1);
            return b1;

      case ETHERTYPE_ATALK:
      case ETHERTYPE_AARP:
            /*
             * EtherTalk (AppleTalk protocols on Ethernet link
             * layer) may use 802.2 encapsulation.
             */

            /*
             * Check for 802.2 encapsulation (EtherTalk phase 2?);
             * we check for the 802.2 protocol type in the
             * "Ethernet type" field.
             */
            b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);

            /*
             * 802.2-encapsulated ETHERTYPE_ATALK packets are
             * SNAP packets with an organization code of
             * 0x080007 (Apple, for Appletalk) and a protocol
             * type of ETHERTYPE_ATALK (Appletalk).
             *
             * 802.2-encapsulated ETHERTYPE_AARP packets are
             * SNAP packets with an organization code of
             * 0x000000 (encapsulated Ethernet) and a protocol
             * type of ETHERTYPE_AARP (Appletalk ARP).
             */
            if (proto == ETHERTYPE_ATALK)
                  b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
            else  /* proto == ETHERTYPE_AARP */
                  b1 = gen_snap(0x000000, ETHERTYPE_AARP);
            gen_and(b0, b1);

            /*
             * Check for Ethernet encapsulation (Ethertalk
             * phase 1?); we just check for the Ethernet
             * protocol type.
             */
            b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);

            gen_or(b0, b1);
            return b1;

      default:
            if (proto <= ETHERMTU) {
                  /*
                   * This is an LLC SAP value, so the frames
                   * that match would be 802.2 frames.
                   * Check for the 802.2 protocol type
                   * in the "Ethernet type" field, and
                   * then check the DSAP.
                   */
                  b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
                      LINUX_SLL_P_802_2);
                  b1 = gen_cmp(OR_LINK, off_macpl, BPF_B,
                       (bpf_int32)proto);
                  gen_and(b0, b1);
                  return b1;
            } else {
                  /*
                   * This is an Ethernet type, so compare
                   * the length/type field with it (if
                   * the frame is an 802.2 frame, the length
                   * field will be <= ETHERMTU, and, as
                   * "proto" is > ETHERMTU, this test
                   * will fail and the frame won't match,
                   * which is what we want).
                   */
                  return gen_cmp(OR_LINK, off_linktype, BPF_H,
                      (bpf_int32)proto);
            }
      }
}

static struct slist *
gen_load_prism_llprefixlen()
{
      struct slist *s1, *s2;
      struct slist *sjeq_avs_cookie;
      struct slist *sjcommon;

      /*
       * This code is not compatible with the optimizer, as
       * we are generating jmp instructions within a normal
       * slist of instructions
       */
      no_optimize = 1;

      /*
       * Generate code to load the length of the radio header into
       * the register assigned to hold that length, if one has been
       * assigned.  (If one hasn't been assigned, no code we've
       * generated uses that prefix, so we don't need to generate any
       * code to load it.)
       *
       * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
       * or always use the AVS header rather than the Prism header.
       * We load a 4-byte big-endian value at the beginning of the
       * raw packet data, and see whether, when masked with 0xFFFFF000,
       * it's equal to 0x80211000.  If so, that indicates that it's
       * an AVS header (the masked-out bits are the version number).
       * Otherwise, it's a Prism header.
       *
       * XXX - the Prism header is also, in theory, variable-length,
       * but no known software generates headers that aren't 144
       * bytes long.
       */
      if (reg_off_ll != -1) {
            /*
             * Load the cookie.
             */
            s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
            s1->s.k = 0;

            /*
             * AND it with 0xFFFFF000.
             */
            s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
            s2->s.k = 0xFFFFF000;
            sappend(s1, s2);

            /*
             * Compare with 0x80211000.
             */
            sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
            sjeq_avs_cookie->s.k = 0x80211000;
            sappend(s1, sjeq_avs_cookie);

            /*
             * If it's AVS:
             *
             * The 4 bytes at an offset of 4 from the beginning of
             * the AVS header are the length of the AVS header.
             * That field is big-endian.
             */
            s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
            s2->s.k = 4;
            sappend(s1, s2);
            sjeq_avs_cookie->s.jt = s2;

            /*
             * Now jump to the code to allocate a register
             * into which to save the header length and
             * store the length there.  (The "jump always"
             * instruction needs to have the k field set;
             * it's added to the PC, so, as we're jumping
             * over a single instruction, it should be 1.)
             */
            sjcommon = new_stmt(JMP(BPF_JA));
            sjcommon->s.k = 1;
            sappend(s1, sjcommon);

            /*
             * Now for the code that handles the Prism header.
             * Just load the length of the Prism header (144)
             * into the A register.  Have the test for an AVS
             * header branch here if we don't have an AVS header.
             */
            s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
            s2->s.k = 144;
            sappend(s1, s2);
            sjeq_avs_cookie->s.jf = s2;

            /*
             * Now allocate a register to hold that value and store
             * it.  The code for the AVS header will jump here after
             * loading the length of the AVS header.
             */
            s2 = new_stmt(BPF_ST);
            s2->s.k = reg_off_ll;
            sappend(s1, s2);
            sjcommon->s.jf = s2;

            /*
             * Now move it into the X register.
             */
            s2 = new_stmt(BPF_MISC|BPF_TAX);
            sappend(s1, s2);

            return (s1);
      } else
            return (NULL);
}

static struct slist *
gen_load_avs_llprefixlen()
{
      struct slist *s1, *s2;

      /*
       * Generate code to load the length of the AVS header into
       * the register assigned to hold that length, if one has been
       * assigned.  (If one hasn't been assigned, no code we've
       * generated uses that prefix, so we don't need to generate any
       * code to load it.)
       */
      if (reg_off_ll != -1) {
            /*
             * The 4 bytes at an offset of 4 from the beginning of
             * the AVS header are the length of the AVS header.
             * That field is big-endian.
             */
            s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
            s1->s.k = 4;

            /*
             * Now allocate a register to hold that value and store
             * it.
             */
            s2 = new_stmt(BPF_ST);
            s2->s.k = reg_off_ll;
            sappend(s1, s2);

            /*
             * Now move it into the X register.
             */
            s2 = new_stmt(BPF_MISC|BPF_TAX);
            sappend(s1, s2);

            return (s1);
      } else
            return (NULL);
}

static struct slist *
gen_load_radiotap_llprefixlen()
{
      struct slist *s1, *s2;

      /*
       * Generate code to load the length of the radiotap header into
       * the register assigned to hold that length, if one has been
       * assigned.  (If one hasn't been assigned, no code we've
       * generated uses that prefix, so we don't need to generate any
       * code to load it.)
       */
      if (reg_off_ll != -1) {
            /*
             * The 2 bytes at offsets of 2 and 3 from the beginning
             * of the radiotap header are the length of the radiotap
             * header; unfortunately, it's little-endian, so we have
             * to load it a byte at a time and construct the value.
             */

            /*
             * Load the high-order byte, at an offset of 3, shift it
             * left a byte, and put the result in the X register.
             */
            s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
            s1->s.k = 3;
            s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
            sappend(s1, s2);
            s2->s.k = 8;
            s2 = new_stmt(BPF_MISC|BPF_TAX);
            sappend(s1, s2);

            /*
             * Load the next byte, at an offset of 2, and OR the
             * value from the X register into it.
             */
            s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
            sappend(s1, s2);
            s2->s.k = 2;
            s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
            sappend(s1, s2);

            /*
             * Now allocate a register to hold that value and store
             * it.
             */
            s2 = new_stmt(BPF_ST);
            s2->s.k = reg_off_ll;
            sappend(s1, s2);

            /*
             * Now move it into the X register.
             */
            s2 = new_stmt(BPF_MISC|BPF_TAX);
            sappend(s1, s2);

            return (s1);
      } else
            return (NULL);
}

/* 
 * At the moment we treat PPI as normal Radiotap encoded
 * packets. The difference is in the function that generates
 * the code at the beginning to compute the header length.
 * Since this code generator of PPI supports bare 802.11
 * encapsulation only (i.e. the encapsulated DLT should be
 * DLT_IEEE802_11) we generate code to check for this too;
 * that's done in finish_parse().
 */
static struct slist *
gen_load_ppi_llprefixlen()
{
      struct slist *s1, *s2;
      
      /*
       * Generate code to load the length of the radiotap header
       * into the register assigned to hold that length, if one has
       * been assigned.
       */
      if (reg_off_ll != -1) {
            /*
             * The 2 bytes at offsets of 2 and 3 from the beginning
             * of the radiotap header are the length of the radiotap
             * header; unfortunately, it's little-endian, so we have
             * to load it a byte at a time and construct the value.
             */

            /*
             * Load the high-order byte, at an offset of 3, shift it
             * left a byte, and put the result in the X register.
             */
            s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
            s1->s.k = 3;
            s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
            sappend(s1, s2);
            s2->s.k = 8;
            s2 = new_stmt(BPF_MISC|BPF_TAX);
            sappend(s1, s2);

            /*
             * Load the next byte, at an offset of 2, and OR the
             * value from the X register into it.
             */
            s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
            sappend(s1, s2);
            s2->s.k = 2;
            s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
            sappend(s1, s2);

            /*
             * Now allocate a register to hold that value and store
             * it.
             */
            s2 = new_stmt(BPF_ST);
            s2->s.k = reg_off_ll;
            sappend(s1, s2);

            /*
             * Now move it into the X register.
             */
            s2 = new_stmt(BPF_MISC|BPF_TAX);
            sappend(s1, s2);

            return (s1);
      } else
            return (NULL);
}

/*
 * Load a value relative to the beginning of the link-layer header after the 802.11
 * header, i.e. LLC_SNAP.
 * The link-layer header doesn't necessarily begin at the beginning
 * of the packet data; there might be a variable-length prefix containing
 * radio information.
 */
static struct slist *
gen_load_802_11_header_len(struct slist *s, struct slist *snext)
{
      struct slist *s2;
      struct slist *sjset_data_frame_1;
      struct slist *sjset_data_frame_2;
      struct slist *sjset_qos;
      struct slist *sjset_radiotap_flags;
      struct slist *sjset_radiotap_tsft;
      struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
      struct slist *s_roundup;

      if (reg_off_macpl == -1) {
            /*
             * No register has been assigned to the offset of
             * the MAC-layer payload, which means nobody needs
             * it; don't bother computing it - just return
             * what we already have.
             */
            return (s);
      }

      /*
       * This code is not compatible with the optimizer, as
       * we are generating jmp instructions within a normal
       * slist of instructions
       */
      no_optimize = 1;
      
      /*
       * If "s" is non-null, it has code to arrange that the X register
       * contains the length of the prefix preceding the link-layer
       * header.
       *
       * Otherwise, the length of the prefix preceding the link-layer
       * header is "off_ll".
       */
      if (s == NULL) {
            /*
             * There is no variable-length header preceding the
             * link-layer header.
             *
             * Load the length of the fixed-length prefix preceding
             * the link-layer header (if any) into the X register,
             * and store it in the reg_off_macpl register.
             * That length is off_ll.
             */
            s = new_stmt(BPF_LDX|BPF_IMM);
            s->s.k = off_ll;
      }

      /*
       * The X register contains the offset of the beginning of the
       * link-layer header; add 24, which is the minimum length
       * of the MAC header for a data frame, to that, and store it
       * in reg_off_macpl, and then load the Frame Control field,
       * which is at the offset in the X register, with an indexed load.
       */
      s2 = new_stmt(BPF_MISC|BPF_TXA);
      sappend(s, s2);
      s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
      s2->s.k = 24;
      sappend(s, s2);
      s2 = new_stmt(BPF_ST);
      s2->s.k = reg_off_macpl;
      sappend(s, s2);

      s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
      s2->s.k = 0;
      sappend(s, s2);

      /*
       * Check the Frame Control field to see if this is a data frame;
       * a data frame has the 0x08 bit (b3) in that field set and the
       * 0x04 bit (b2) clear.
       */
      sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
      sjset_data_frame_1->s.k = 0x08;
      sappend(s, sjset_data_frame_1);
            
      /*
       * If b3 is set, test b2, otherwise go to the first statement of
       * the rest of the program.
       */
      sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
      sjset_data_frame_2->s.k = 0x04;
      sappend(s, sjset_data_frame_2);
      sjset_data_frame_1->s.jf = snext;

      /*
       * If b2 is not set, this is a data frame; test the QoS bit.
       * Otherwise, go to the first statement of the rest of the
       * program.
       */
      sjset_data_frame_2->s.jt = snext;
      sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
      sjset_qos->s.k = 0x80;  /* QoS bit */
      sappend(s, sjset_qos);
            
      /*
       * If it's set, add 2 to reg_off_macpl, to skip the QoS
       * field.
       * Otherwise, go to the first statement of the rest of the
       * program.
       */
      sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
      s2->s.k = reg_off_macpl;
      sappend(s, s2);
      s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
      s2->s.k = 2;
      sappend(s, s2);
      s2 = new_stmt(BPF_ST);
      s2->s.k = reg_off_macpl;
      sappend(s, s2);

      /*
       * If we have a radiotap header, look at it to see whether
       * there's Atheros padding between the MAC-layer header
       * and the payload.
       *
       * Note: all of the fields in the radiotap header are
       * little-endian, so we byte-swap all of the values
       * we test against, as they will be loaded as big-endian
       * values.
       */
      if (linktype == DLT_IEEE802_11_RADIO) {
            /*
             * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
             * in the presence flag?
             */
            sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
            s2->s.k = 4;
            sappend(s, s2);

            sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
            sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
            sappend(s, sjset_radiotap_flags);

            /*
             * If not, skip all of this.
             */
            sjset_radiotap_flags->s.jf = snext;

            /*
             * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
             */
            sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
                new_stmt(JMP(BPF_JSET));
            sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
            sappend(s, sjset_radiotap_tsft);

            /*
             * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
             * at an offset of 16 from the beginning of the raw packet
             * data (8 bytes for the radiotap header and 8 bytes for
             * the TSFT field).
             *
             * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
             * is set.
             */
            sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
            s2->s.k = 16;
            sappend(s, s2);

            sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
            sjset_tsft_datapad->s.k = 0x20;
            sappend(s, sjset_tsft_datapad);

            /*
             * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
             * at an offset of 8 from the beginning of the raw packet
             * data (8 bytes for the radiotap header).
             *
             * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
             * is set.
             */
            sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
            s2->s.k = 8;
            sappend(s, s2);

            sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
            sjset_notsft_datapad->s.k = 0x20;
            sappend(s, sjset_notsft_datapad);

            /*
             * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
             * set, round the length of the 802.11 header to
             * a multiple of 4.  Do that by adding 3 and then
             * dividing by and multiplying by 4, which we do by
             * ANDing with ~3.
             */
            s_roundup = new_stmt(BPF_LD|BPF_MEM);
            s_roundup->s.k = reg_off_macpl;
            sappend(s, s_roundup);
            s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
            s2->s.k = 3;
            sappend(s, s2);
            s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
            s2->s.k = ~3;
            sappend(s, s2);
            s2 = new_stmt(BPF_ST);
            s2->s.k = reg_off_macpl;
            sappend(s, s2);

            sjset_tsft_datapad->s.jt = s_roundup;
            sjset_tsft_datapad->s.jf = snext;
            sjset_notsft_datapad->s.jt = s_roundup;
            sjset_notsft_datapad->s.jf = snext;
      } else
            sjset_qos->s.jf = snext;

      return s;
}

static void
insert_compute_vloffsets(b)
      struct block *b;
{
      struct slist *s;

      /*
       * For link-layer types that have a variable-length header
       * preceding the link-layer header, generate code to load
       * the offset of the link-layer header into the register
       * assigned to that offset, if any.
       */
      switch (linktype) {

      case DLT_PRISM_HEADER:
            s = gen_load_prism_llprefixlen();
            break;

      case DLT_IEEE802_11_RADIO_AVS:
            s = gen_load_avs_llprefixlen();
            break;

      case DLT_IEEE802_11_RADIO:
            s = gen_load_radiotap_llprefixlen();
            break;

      case DLT_PPI:
            s = gen_load_ppi_llprefixlen();
            break;

      default:
            s = NULL;
            break;
      }

      /*
       * For link-layer types that have a variable-length link-layer
       * header, generate code to load the offset of the MAC-layer
       * payload into the register assigned to that offset, if any.
       */
      switch (linktype) {

      case DLT_IEEE802_11:
      case DLT_PRISM_HEADER:
      case DLT_IEEE802_11_RADIO_AVS:
      case DLT_IEEE802_11_RADIO:
      case DLT_PPI:
            s = gen_load_802_11_header_len(s, b->stmts);
            break;
      }

      /*
       * If we have any offset-loading code, append all the
       * existing statements in the block to those statements,
       * and make the resulting list the list of statements
       * for the block.
       */
      if (s != NULL) {
            sappend(s, b->stmts);
            b->stmts = s;
      }
}

static struct block *
gen_ppi_dlt_check(void)
{
      struct slist *s_load_dlt;
      struct block *b;

      if (linktype == DLT_PPI)
      {
            /* Create the statements that check for the DLT
             */
            s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
            s_load_dlt->s.k = 4;

            b = new_block(JMP(BPF_JEQ));

            b->stmts = s_load_dlt;
            b->s.k = SWAPLONG(DLT_IEEE802_11);
      }
      else
      {
            b = NULL;
      }

      return b;
}

static struct slist *
gen_prism_llprefixlen(void)
{
      struct slist *s;

      if (reg_off_ll == -1) {
            /*
             * We haven't yet assigned a register for the length
             * of the radio header; allocate one.
             */
            reg_off_ll = alloc_reg();
      }

      /*
       * Load the register containing the radio length
       * into the X register.
       */
      s = new_stmt(BPF_LDX|BPF_MEM);
      s->s.k = reg_off_ll;
      return s;
}

static struct slist *
gen_avs_llprefixlen(void)
{
      struct slist *s;

      if (reg_off_ll == -1) {
            /*
             * We haven't yet assigned a register for the length
             * of the AVS header; allocate one.
             */
            reg_off_ll = alloc_reg();
      }

      /*
       * Load the register containing the AVS length
       * into the X register.
       */
      s = new_stmt(BPF_LDX|BPF_MEM);
      s->s.k = reg_off_ll;
      return s;
}

static struct slist *
gen_radiotap_llprefixlen(void)
{
      struct slist *s;

      if (reg_off_ll == -1) {
            /*
             * We haven't yet assigned a register for the length
             * of the radiotap header; allocate one.
             */
            reg_off_ll = alloc_reg();
      }

      /*
       * Load the register containing the radiotap length
       * into the X register.
       */
      s = new_stmt(BPF_LDX|BPF_MEM);
      s->s.k = reg_off_ll;
      return s;
}

/* 
 * At the moment we treat PPI as normal Radiotap encoded
 * packets. The difference is in the function that generates
 * the code at the beginning to compute the header length.
 * Since this code generator of PPI supports bare 802.11
 * encapsulation only (i.e. the encapsulated DLT should be
 * DLT_IEEE802_11) we generate code to check for this too.
 */
static struct slist *
gen_ppi_llprefixlen(void)
{
      struct slist *s;

      if (reg_off_ll == -1) {
            /*
             * We haven't yet assigned a register for the length
             * of the radiotap header; allocate one.
             */
            reg_off_ll = alloc_reg();
      }

      /*
       * Load the register containing the PPI length
       * into the X register.
       */
      s = new_stmt(BPF_LDX|BPF_MEM);
      s->s.k = reg_off_ll;
      return s;
}

/*
 * Generate code to compute the link-layer header length, if necessary,
 * putting it into the X register, and to return either a pointer to a
 * "struct slist" for the list of statements in that code, or NULL if
 * no code is necessary.
 */
static struct slist *
gen_llprefixlen(void)
{
      switch (linktype) {

      case DLT_PRISM_HEADER:
            return gen_prism_llprefixlen();

      case DLT_IEEE802_11_RADIO_AVS:
            return gen_avs_llprefixlen();

      case DLT_IEEE802_11_RADIO:
            return gen_radiotap_llprefixlen();

      case DLT_PPI:
            return gen_ppi_llprefixlen();

      default:
            return NULL;
      }
}

/*
 * Generate code to load the register containing the offset of the
 * MAC-layer payload into the X register; if no register for that offset
 * has been allocated, allocate it first.
 */
static struct slist *
gen_off_macpl(void)
{
      struct slist *s;

      if (off_macpl_is_variable) {
            if (reg_off_macpl == -1) {
                  /*
                   * We haven't yet assigned a register for the offset
                   * of the MAC-layer payload; allocate one.
                   */
                  reg_off_macpl = alloc_reg();
            }

            /*
             * Load the register containing the offset of the MAC-layer
             * payload into the X register.
             */
            s = new_stmt(BPF_LDX|BPF_MEM);
            s->s.k = reg_off_macpl;
            return s;
      } else {
            /*
             * That offset isn't variable, so we don't need to
             * generate any code.
             */
            return NULL;
      }
}

/*
 * Map an Ethernet type to the equivalent PPP type.
 */
static int
ethertype_to_ppptype(proto)
      int proto;
{
      switch (proto) {

      case ETHERTYPE_IP:
            proto = PPP_IP;
            break;

#ifdef INET6
      case ETHERTYPE_IPV6:
            proto = PPP_IPV6;
            break;
#endif

      case ETHERTYPE_DN:
            proto = PPP_DECNET;
            break;

      case ETHERTYPE_ATALK:
            proto = PPP_APPLE;
            break;

      case ETHERTYPE_NS:
            proto = PPP_NS;
            break;

      case LLCSAP_ISONS:
            proto = PPP_OSI;
            break;

      case LLCSAP_8021D:
            /*
             * I'm assuming the "Bridging PDU"s that go
             * over PPP are Spanning Tree Protocol
             * Bridging PDUs.
             */
            proto = PPP_BRPDU;
            break;

      case LLCSAP_IPX:
            proto = PPP_IPX;
            break;
      }
      return (proto);
}

/*
 * Generate code to match a particular packet type by matching the
 * link-layer type field or fields in the 802.2 LLC header.
 *
 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
 * value, if <= ETHERMTU.
 */
static struct block *
gen_linktype(proto)
      register int proto;
{
      struct block *b0, *b1, *b2;

      /* are we checking MPLS-encapsulated packets? */
      if (label_stack_depth > 0) {
            switch (proto) {
            case ETHERTYPE_IP:
            case PPP_IP:
                  /* FIXME add other L3 proto IDs */
                  return gen_mpls_linktype(Q_IP); 

            case ETHERTYPE_IPV6:
            case PPP_IPV6:
                  /* FIXME add other L3 proto IDs */
                  return gen_mpls_linktype(Q_IPV6); 

            default:
                  bpf_error("unsupported protocol over mpls");
                  /* NOTREACHED */
            }
      }

      /*
       * Are we testing PPPoE packets?
       */
      if (is_pppoes) {
            /*
             * The PPPoE session header is part of the
             * MAC-layer payload, so all references
             * should be relative to the beginning of
             * that payload.
             */

            /*
             * We use Ethernet protocol types inside libpcap;
             * map them to the corresponding PPP protocol types.
             */
            proto = ethertype_to_ppptype(proto);
            return gen_cmp(OR_MACPL, off_linktype, BPF_H, (bpf_int32)proto);
      }

      switch (linktype) {

      case DLT_EN10MB:
            return gen_ether_linktype(proto);
            /*NOTREACHED*/
            break;

      case DLT_C_HDLC:
            switch (proto) {

            case LLCSAP_ISONS:
                  proto = (proto << 8 | LLCSAP_ISONS);
                  /* fall through */

            default:
                  return gen_cmp(OR_LINK, off_linktype, BPF_H,
                      (bpf_int32)proto);
                  /*NOTREACHED*/
                  break;
            }
            break;

      case DLT_IEEE802_11:
      case DLT_PRISM_HEADER:
      case DLT_IEEE802_11_RADIO_AVS:
      case DLT_IEEE802_11_RADIO:
      case DLT_PPI:
            /*
             * Check that we have a data frame.
             */
            b0 = gen_check_802_11_data_frame();

            /*
             * Now check for the specified link-layer type.
             */
            b1 = gen_llc_linktype(proto);
            gen_and(b0, b1);
            return b1;
            /*NOTREACHED*/
            break;

      case DLT_FDDI:
            /*
             * XXX - check for asynchronous frames, as per RFC 1103.
             */
            return gen_llc_linktype(proto);
            /*NOTREACHED*/
            break;

      case DLT_IEEE802:
            /*
             * XXX - check for LLC PDUs, as per IEEE 802.5.
             */
            return gen_llc_linktype(proto);
            /*NOTREACHED*/
            break;

      case DLT_ATM_RFC1483:
      case DLT_ATM_CLIP:
      case DLT_IP_OVER_FC:
            return gen_llc_linktype(proto);
            /*NOTREACHED*/
            break;

      case DLT_SUNATM:
            /*
             * If "is_lane" is set, check for a LANE-encapsulated
             * version of this protocol, otherwise check for an
             * LLC-encapsulated version of this protocol.
             *
             * We assume LANE means Ethernet, not Token Ring.
             */
            if (is_lane) {
                  /*
                   * Check that the packet doesn't begin with an
                   * LE Control marker.  (We've already generated
                   * a test for LANE.)
                   */
                  b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
                      0xFF00);
                  gen_not(b0);

                  /*
                   * Now generate an Ethernet test.
                   */
                  b1 = gen_ether_linktype(proto);
                  gen_and(b0, b1);
                  return b1;
            } else {
                  /*
                   * Check for LLC encapsulation and then check the
                   * protocol.
                   */
                  b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
                  b1 = gen_llc_linktype(proto);
                  gen_and(b0, b1);
                  return b1;
            }
            /*NOTREACHED*/
            break;

      case DLT_LINUX_SLL:
            return gen_linux_sll_linktype(proto);
            /*NOTREACHED*/
            break;

      case DLT_SLIP:
      case DLT_SLIP_BSDOS:
      case DLT_RAW:
            /*
             * These types don't provide any type field; packets
             * are always IPv4 or IPv6.
             *
             * XXX - for IPv4, check for a version number of 4, and,
             * for IPv6, check for a version number of 6?
             */
            switch (proto) {

            case ETHERTYPE_IP:
                  /* Check for a version number of 4. */
                  return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
#ifdef INET6
            case ETHERTYPE_IPV6:
                  /* Check for a version number of 6. */
                  return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
#endif

            default:
                  return gen_false();           /* always false */
            }
            /*NOTREACHED*/
            break;

      case DLT_PPP:
      case DLT_PPP_PPPD:
      case DLT_PPP_SERIAL:
      case DLT_PPP_ETHER:
            /*
             * We use Ethernet protocol types inside libpcap;
             * map them to the corresponding PPP protocol types.
             */
            proto = ethertype_to_ppptype(proto);
            return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
            /*NOTREACHED*/
            break;

      case DLT_PPP_BSDOS:
            /*
             * We use Ethernet protocol types inside libpcap;
             * map them to the corresponding PPP protocol types.
             */
            switch (proto) {

            case ETHERTYPE_IP:
                  /*
                   * Also check for Van Jacobson-compressed IP.
                   * XXX - do this for other forms of PPP?
                   */
                  b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
                  b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
                  gen_or(b0, b1);
                  b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
                  gen_or(b1, b0);
                  return b0;

            default:
                  proto = ethertype_to_ppptype(proto);
                  return gen_cmp(OR_LINK, off_linktype, BPF_H,
                        (bpf_int32)proto);
            }
            /*NOTREACHED*/
            break;

      case DLT_NULL:
      case DLT_LOOP:
      case DLT_ENC:
            /*
             * For DLT_NULL, the link-layer header is a 32-bit
             * word containing an AF_ value in *host* byte order,
             * and for DLT_ENC, the link-layer header begins
             * with a 32-bit work containing an AF_ value in
             * host byte order.
             *
             * In addition, if we're reading a saved capture file,
             * the host byte order in the capture may not be the
             * same as the host byte order on this machine.
             *
             * For DLT_LOOP, the link-layer header is a 32-bit
             * word containing an AF_ value in *network* byte order.
             *
             * XXX - AF_ values may, unfortunately, be platform-
             * dependent; for example, FreeBSD's AF_INET6 is 24
             * whilst NetBSD's and OpenBSD's is 26.
             *
             * This means that, when reading a capture file, just
             * checking for our AF_INET6 value won't work if the
             * capture file came from another OS.
             */
            switch (proto) {

            case ETHERTYPE_IP:
                  proto = AF_INET;
                  break;

#ifdef INET6
            case ETHERTYPE_IPV6:
                  proto = AF_INET6;
                  break;
#endif

            default:
                  /*
                   * Not a type on which we support filtering.
                   * XXX - support those that have AF_ values
                   * #defined on this platform, at least?
                   */
                  return gen_false();
            }

            if (linktype == DLT_NULL || linktype == DLT_ENC) {
                  /*
                   * The AF_ value is in host byte order, but
                   * the BPF interpreter will convert it to
                   * network byte order.
                   *
                   * If this is a save file, and it's from a
                   * machine with the opposite byte order to
                   * ours, we byte-swap the AF_ value.
                   *
                   * Then we run it through "htonl()", and
                   * generate code to compare against the result.
                   */
                  if (bpf_pcap->sf.rfile != NULL &&
                      bpf_pcap->sf.swapped)
                        proto = SWAPLONG(proto);
                  proto = htonl(proto);
            }
            return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));

#ifdef HAVE_NET_PFVAR_H
      case DLT_PFLOG:
            /*
             * af field is host byte order in contrast to the rest of
             * the packet.
             */
            if (proto == ETHERTYPE_IP)
                  return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
                      BPF_B, (bpf_int32)AF_INET));
#ifdef INET6
            else if (proto == ETHERTYPE_IPV6)
                  return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
                      BPF_B, (bpf_int32)AF_INET6));
#endif /* INET6 */
            else
                  return gen_false();
            /*NOTREACHED*/
            break;
#endif /* HAVE_NET_PFVAR_H */

      case DLT_ARCNET:
      case DLT_ARCNET_LINUX:
            /*
             * XXX should we check for first fragment if the protocol
             * uses PHDS?
             */
            switch (proto) {

            default:
                  return gen_false();

#ifdef INET6
            case ETHERTYPE_IPV6:
                  return (gen_cmp(OR_LINK, off_linktype, BPF_B,
                        (bpf_int32)ARCTYPE_INET6));
#endif /* INET6 */

            case ETHERTYPE_IP:
                  b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
                             (bpf_int32)ARCTYPE_IP);
                  b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
                             (bpf_int32)ARCTYPE_IP_OLD);
                  gen_or(b0, b1);
                  return (b1);

            case ETHERTYPE_ARP:
                  b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
                             (bpf_int32)ARCTYPE_ARP);
                  b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
                             (bpf_int32)ARCTYPE_ARP_OLD);
                  gen_or(b0, b1);
                  return (b1);

            case ETHERTYPE_REVARP:
                  return (gen_cmp(OR_LINK, off_linktype, BPF_B,
                              (bpf_int32)ARCTYPE_REVARP));

            case ETHERTYPE_ATALK:
                  return (gen_cmp(OR_LINK, off_linktype, BPF_B,
                              (bpf_int32)ARCTYPE_ATALK));
            }
            /*NOTREACHED*/
            break;

      case DLT_LTALK:
            switch (proto) {
            case ETHERTYPE_ATALK:
                  return gen_true();
            default:
                  return gen_false();
            }
            /*NOTREACHED*/
            break;

      case DLT_FRELAY:
            /*
             * XXX - assumes a 2-byte Frame Relay header with
             * DLCI and flags.  What if the address is longer?
             */
            switch (proto) {

            case ETHERTYPE_IP:
                  /*
                   * Check for the special NLPID for IP.
                   */
                  return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);

#ifdef INET6
            case ETHERTYPE_IPV6:
                  /*
                   * Check for the special NLPID for IPv6.
                   */
                  return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
#endif

            case LLCSAP_ISONS:
                  /*
                   * Check for several OSI protocols.
                   *
                   * Frame Relay packets typically have an OSI
                   * NLPID at the beginning; we check for each
                   * of them.
                   *
                   * What we check for is the NLPID and a frame
                   * control field of UI, i.e. 0x03 followed
                   * by the NLPID.
                   */
                  b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
                  b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
                  b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
                  gen_or(b1, b2);
                  gen_or(b0, b2);
                  return b2;

            default:
                  return gen_false();
            }
            /*NOTREACHED*/
            break;

      case DLT_MFR:
            bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");

        case DLT_JUNIPER_MFR:
        case DLT_JUNIPER_MLFR:
        case DLT_JUNIPER_MLPPP:
      case DLT_JUNIPER_ATM1:
      case DLT_JUNIPER_ATM2:
      case DLT_JUNIPER_PPPOE:
      case DLT_JUNIPER_PPPOE_ATM:
        case DLT_JUNIPER_GGSN:
        case DLT_JUNIPER_ES:
        case DLT_JUNIPER_MONITOR:
        case DLT_JUNIPER_SERVICES:
        case DLT_JUNIPER_ETHER:
        case DLT_JUNIPER_PPP:
        case DLT_JUNIPER_FRELAY:
        case DLT_JUNIPER_CHDLC:
        case DLT_JUNIPER_VP:
        case DLT_JUNIPER_ST:
        case DLT_JUNIPER_ISM:
            /* just lets verify the magic number for now -
             * on ATM we may have up to 6 different encapsulations on the wire
             * and need a lot of heuristics to figure out that the payload
             * might be;
             *
             * FIXME encapsulation specific BPF_ filters
             */
            return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */

      case DLT_LINUX_IRDA:
            bpf_error("IrDA link-layer type filtering not implemented");

      case DLT_DOCSIS:
            bpf_error("DOCSIS link-layer type filtering not implemented");

      case DLT_MTP2:
      case DLT_MTP2_WITH_PHDR:
            bpf_error("MTP2 link-layer type filtering not implemented");

      case DLT_ERF:
            bpf_error("ERF link-layer type filtering not implemented");

#ifdef DLT_PFSYNC
      case DLT_PFSYNC:
            bpf_error("PFSYNC link-layer type filtering not implemented");
#endif

      case DLT_LINUX_LAPD:
            bpf_error("LAPD link-layer type filtering not implemented");

      case DLT_USB:
      case DLT_USB_LINUX:
            bpf_error("USB link-layer type filtering not implemented");

      case DLT_BLUETOOTH_HCI_H4:
      case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
            bpf_error("Bluetooth link-layer type filtering not implemented");

      case DLT_CAN20B:
            bpf_error("CAN20B link-layer type filtering not implemented");

      case DLT_IEEE802_15_4:
      case DLT_IEEE802_15_4_LINUX:
      case DLT_IEEE802_15_4_NONASK_PHY:
            bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");

      case DLT_IEEE802_16_MAC_CPS_RADIO:
            bpf_error("IEEE 802.16 link-layer type filtering not implemented");

      case DLT_SITA:
            bpf_error("SITA link-layer type filtering not implemented");

      case DLT_RAIF1:
            bpf_error("RAIF1 link-layer type filtering not implemented");

      case DLT_IPMB:
            bpf_error("IPMB link-layer type filtering not implemented");

      case DLT_AX25_KISS:
            bpf_error("AX.25 link-layer type filtering not implemented");
      }

      /*
       * All the types that have no encapsulation should either be
       * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
       * all packets are IP packets, or should be handled in some
       * special case, if none of them are (if some are and some
       * aren't, the lack of encapsulation is a problem, as we'd
       * have to find some other way of determining the packet type).
       *
       * Therefore, if "off_linktype" is -1, there's an error.
       */
      if (off_linktype == (u_int)-1)
            abort();

      /*
       * Any type not handled above should always have an Ethernet
       * type at an offset of "off_linktype".
       */
      return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
}

/*
 * Check for an LLC SNAP packet with a given organization code and
 * protocol type; we check the entire contents of the 802.2 LLC and
 * snap headers, checking for DSAP and SSAP of SNAP and a control
 * field of 0x03 in the LLC header, and for the specified organization
 * code and protocol type in the SNAP header.
 */
static struct block *
gen_snap(orgcode, ptype)
      bpf_u_int32 orgcode;
      bpf_u_int32 ptype;
{
      u_char snapblock[8];

      snapblock[0] = LLCSAP_SNAP;   /* DSAP = SNAP */
      snapblock[1] = LLCSAP_SNAP;   /* SSAP = SNAP */
      snapblock[2] = 0x03;          /* control = UI */
      snapblock[3] = (orgcode >> 16);     /* upper 8 bits of organization code */
      snapblock[4] = (orgcode >> 8);      /* middle 8 bits of organization code */
      snapblock[5] = (orgcode >> 0);      /* lower 8 bits of organization code */
      snapblock[6] = (ptype >> 8);  /* upper 8 bits of protocol type */
      snapblock[7] = (ptype >> 0);  /* lower 8 bits of protocol type */
      return gen_bcmp(OR_MACPL, 0, 8, snapblock);
}

/*
 * Generate code to match a particular packet type, for link-layer types
 * using 802.2 LLC headers.
 *
 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
 *
 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
 * value, if <= ETHERMTU.  We use that to determine whether to
 * match the DSAP or both DSAP and LSAP or to check the OUI and
 * protocol ID in a SNAP header.
 */
static struct block *
gen_llc_linktype(proto)
      int proto;
{
      /*
       * XXX - handle token-ring variable-length header.
       */
      switch (proto) {

      case LLCSAP_IP:
      case LLCSAP_ISONS:
      case LLCSAP_NETBEUI:
            /*
             * XXX - should we check both the DSAP and the
             * SSAP, like this, or should we check just the
             * DSAP, as we do for other types <= ETHERMTU
             * (i.e., other SAP values)?
             */
            return gen_cmp(OR_MACPL, 0, BPF_H, (bpf_u_int32)
                       ((proto << 8) | proto));

      case LLCSAP_IPX:
            /*
             * XXX - are there ever SNAP frames for IPX on
             * non-Ethernet 802.x networks?
             */
            return gen_cmp(OR_MACPL, 0, BPF_B,
                (bpf_int32)LLCSAP_IPX);

      case ETHERTYPE_ATALK:
            /*
             * 802.2-encapsulated ETHERTYPE_ATALK packets are
             * SNAP packets with an organization code of
             * 0x080007 (Apple, for Appletalk) and a protocol
             * type of ETHERTYPE_ATALK (Appletalk).
             *
             * XXX - check for an organization code of
             * encapsulated Ethernet as well?
             */
            return gen_snap(0x080007, ETHERTYPE_ATALK);

      default:
            /*
             * XXX - we don't have to check for IPX 802.3
             * here, but should we check for the IPX Ethertype?
             */
            if (proto <= ETHERMTU) {
                  /*
                   * This is an LLC SAP value, so check
                   * the DSAP.
                   */
                  return gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)proto);
            } else {
                  /*
                   * This is an Ethernet type; we assume that it's
                   * unlikely that it'll appear in the right place
                   * at random, and therefore check only the
                   * location that would hold the Ethernet type
                   * in a SNAP frame with an organization code of
                   * 0x000000 (encapsulated Ethernet).
                   *
                   * XXX - if we were to check for the SNAP DSAP and
                   * LSAP, as per XXX, and were also to check for an
                   * organization code of 0x000000 (encapsulated
                   * Ethernet), we'd do
                   *
                   *    return gen_snap(0x000000, proto);
                   *
                   * here; for now, we don't, as per the above.
                   * I don't know whether it's worth the extra CPU
                   * time to do the right check or not.
                   */
                  return gen_cmp(OR_MACPL, 6, BPF_H, (bpf_int32)proto);
            }
      }
}

static struct block *
gen_hostop(addr, mask, dir, proto, src_off, dst_off)
      bpf_u_int32 addr;
      bpf_u_int32 mask;
      int dir, proto;
      u_int src_off, dst_off;
{
      struct block *b0, *b1;
      u_int offset;

      switch (dir) {

      case Q_SRC:
            offset = src_off;
            break;

      case Q_DST:
            offset = dst_off;
            break;

      case Q_AND:
            b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
            b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
            gen_and(b0, b1);
            return b1;

      case Q_OR:
      case Q_DEFAULT:
            b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
            b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
            gen_or(b0, b1);
            return b1;

      default:
            abort();
      }
      b0 = gen_linktype(proto);
      b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
      gen_and(b0, b1);
      return b1;
}

#ifdef INET6
static struct block *
gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
      struct in6_addr *addr;
      struct in6_addr *mask;
      int dir, proto;
      u_int src_off, dst_off;
{
      struct block *b0, *b1;
      u_int offset;
      u_int32_t *a, *m;

      switch (dir) {

      case Q_SRC:
            offset = src_off;
            break;

      case Q_DST:
            offset = dst_off;
            break;

      case Q_AND:
            b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
            b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
            gen_and(b0, b1);
            return b1;

      case Q_OR:
      case Q_DEFAULT:
            b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
            b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
            gen_or(b0, b1);
            return b1;

      default:
            abort();
      }
      /* this order is important */
      a = (u_int32_t *)addr;
      m = (u_int32_t *)mask;
      b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
      b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
      gen_and(b0, b1);
      b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
      gen_and(b0, b1);
      b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
      gen_and(b0, b1);
      b0 = gen_linktype(proto);
      gen_and(b0, b1);
      return b1;
}
#endif /*INET6*/

static struct block *
gen_ehostop(eaddr, dir)
      register const u_char *eaddr;
      register int dir;
{
      register struct block *b0, *b1;

      switch (dir) {
      case Q_SRC:
            return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);

      case Q_DST:
            return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);

      case Q_AND:
            b0 = gen_ehostop(eaddr, Q_SRC);
            b1 = gen_ehostop(eaddr, Q_DST);
            gen_and(b0, b1);
            return b1;

      case Q_DEFAULT:
      case Q_OR:
            b0 = gen_ehostop(eaddr, Q_SRC);
            b1 = gen_ehostop(eaddr, Q_DST);
            gen_or(b0, b1);
            return b1;
      }
      abort();
      /* NOTREACHED */
}

/*
 * Like gen_ehostop, but for DLT_FDDI
 */
static struct block *
gen_fhostop(eaddr, dir)
      register const u_char *eaddr;
      register int dir;
{
      struct block *b0, *b1;

      switch (dir) {
      case Q_SRC:
#ifdef PCAP_FDDIPAD
            return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
#else
            return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
#endif

      case Q_DST:
#ifdef PCAP_FDDIPAD
            return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
#else
            return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
#endif

      case Q_AND:
            b0 = gen_fhostop(eaddr, Q_SRC);
            b1 = gen_fhostop(eaddr, Q_DST);
            gen_and(b0, b1);
            return b1;

      case Q_DEFAULT:
      case Q_OR:
            b0 = gen_fhostop(eaddr, Q_SRC);
            b1 = gen_fhostop(eaddr, Q_DST);
            gen_or(b0, b1);
            return b1;
      }
      abort();
      /* NOTREACHED */
}

/*
 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
 */
static struct block *
gen_thostop(eaddr, dir)
      register const u_char *eaddr;
      register int dir;
{
      register struct block *b0, *b1;

      switch (dir) {
      case Q_SRC:
            return gen_bcmp(OR_LINK, 8, 6, eaddr);

      case Q_DST:
            return gen_bcmp(OR_LINK, 2, 6, eaddr);

      case Q_AND:
            b0 = gen_thostop(eaddr, Q_SRC);
            b1 = gen_thostop(eaddr, Q_DST);
            gen_and(b0, b1);
            return b1;

      case Q_DEFAULT:
      case Q_OR:
            b0 = gen_thostop(eaddr, Q_SRC);
            b1 = gen_thostop(eaddr, Q_DST);
            gen_or(b0, b1);
            return b1;
      }
      abort();
      /* NOTREACHED */
}

/*
 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
 * various 802.11 + radio headers.
 */
static struct block *
gen_wlanhostop(eaddr, dir)
      register const u_char *eaddr;
      register int dir;
{
      register struct block *b0, *b1, *b2;
      register struct slist *s;

#ifdef ENABLE_WLAN_FILTERING_PATCH
      /*
       * TODO GV 20070613
       * We need to disable the optimizer because the optimizer is buggy
       * and wipes out some LD instructions generated by the below
       * code to validate the Frame Control bits
       */
      no_optimize = 1;
#endif /* ENABLE_WLAN_FILTERING_PATCH */

      switch (dir) {
      case Q_SRC:
            /*
             * Oh, yuk.
             *
             *    For control frames, there is no SA.
             *
             *    For management frames, SA is at an
             *    offset of 10 from the beginning of
             *    the packet.
             *
             *    For data frames, SA is at an offset
             *    of 10 from the beginning of the packet
             *    if From DS is clear, at an offset of
             *    16 from the beginning of the packet
             *    if From DS is set and To DS is clear,
             *    and an offset of 24 from the beginning
             *    of the packet if From DS is set and To DS
             *    is set.
             */

            /*
             * Generate the tests to be done for data frames
             * with From DS set.
             *
             * First, check for To DS set, i.e. check "link[1] & 0x01".
             */
            s = gen_load_a(OR_LINK, 1, BPF_B);
            b1 = new_block(JMP(BPF_JSET));
            b1->s.k = 0x01;   /* To DS */
            b1->stmts = s;

            /*
             * If To DS is set, the SA is at 24.
             */
            b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
            gen_and(b1, b0);

            /*
             * Now, check for To DS not set, i.e. check
             * "!(link[1] & 0x01)".
             */
            s = gen_load_a(OR_LINK, 1, BPF_B);
            b2 = new_block(JMP(BPF_JSET));
            b2->s.k = 0x01;   /* To DS */
            b2->stmts = s;
            gen_not(b2);

            /*
             * If To DS is not set, the SA is at 16.
             */
            b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
            gen_and(b2, b1);

            /*
             * Now OR together the last two checks.  That gives
             * the complete set of checks for data frames with
             * From DS set.
             */
            gen_or(b1, b0);

            /*
             * Now check for From DS being set, and AND that with
             * the ORed-together checks.
             */
            s = gen_load_a(OR_LINK, 1, BPF_B);
            b1 = new_block(JMP(BPF_JSET));
            b1->s.k = 0x02;   /* From DS */
            b1->stmts = s;
            gen_and(b1, b0);

            /*
             * Now check for data frames with From DS not set.
             */
            s = gen_load_a(OR_LINK, 1, BPF_B);
            b2 = new_block(JMP(BPF_JSET));
            b2->s.k = 0x02;   /* From DS */
            b2->stmts = s;
            gen_not(b2);

            /*
             * If From DS isn't set, the SA is at 10.
             */
            b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
            gen_and(b2, b1);

            /*
             * Now OR together the checks for data frames with
             * From DS not set and for data frames with From DS
             * set; that gives the checks done for data frames.
             */
            gen_or(b1, b0);

            /*
             * Now check for a data frame.
             * I.e, check "link[0] & 0x08".
             */
            s = gen_load_a(OR_LINK, 0, BPF_B);
            b1 = new_block(JMP(BPF_JSET));
            b1->s.k = 0x08;
            b1->stmts = s;

            /*
             * AND that with the checks done for data frames.
             */
            gen_and(b1, b0);

            /*
             * If the high-order bit of the type value is 0, this
             * is a management frame.
             * I.e, check "!(link[0] & 0x08)".
             */
            s = gen_load_a(OR_LINK, 0, BPF_B);
            b2 = new_block(JMP(BPF_JSET));
            b2->s.k = 0x08;
            b2->stmts = s;
            gen_not(b2);

            /*
             * For management frames, the SA is at 10.
             */
            b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
            gen_and(b2, b1);

            /*
             * OR that with the checks done for data frames.
             * That gives the checks done for management and
             * data frames.
             */
            gen_or(b1, b0);

            /*
             * If the low-order bit of the type value is 1,
             * this is either a control frame or a frame
             * with a reserved type, and thus not a
             * frame with an SA.
             *
             * I.e., check "!(link[0] & 0x04)".
             */
            s = gen_load_a(OR_LINK, 0, BPF_B);
            b1 = new_block(JMP(BPF_JSET));
            b1->s.k = 0x04;
            b1->stmts = s;
            gen_not(b1);

            /*
             * AND that with the checks for data and management
             * frames.
             */
            gen_and(b1, b0);
            return b0;

      case Q_DST:
            /*
             * Oh, yuk.
             *
             *    For control frames, there is no DA.
             *
             *    For management frames, DA is at an
             *    offset of 4 from the beginning of
             *    the packet.
             *
             *    For data frames, DA is at an offset
             *    of 4 from the beginning of the packet
             *    if To DS is clear and at an offset of
             *    16 from the beginning of the packet
             *    if To DS is set.
             */

            /*
             * Generate the tests to be done for data frames.
             *
             * First, check for To DS set, i.e. "link[1] & 0x01".
             */
            s = gen_load_a(OR_LINK, 1, BPF_B);
            b1 = new_block(JMP(BPF_JSET));
            b1->s.k = 0x01;   /* To DS */
            b1->stmts = s;

            /*
             * If To DS is set, the DA is at 16.
             */
            b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
            gen_and(b1, b0);

            /*
             * Now, check for To DS not set, i.e. check
             * "!(link[1] & 0x01)".
             */
            s = gen_load_a(OR_LINK, 1, BPF_B);
            b2 = new_block(JMP(BPF_JSET));
            b2->s.k = 0x01;   /* To DS */
            b2->stmts = s;
            gen_not(b2);

            /*
             * If To DS is not set, the DA is at 4.
             */
            b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
            gen_and(b2, b1);

            /*
             * Now OR together the last two checks.  That gives
             * the complete set of checks for data frames.
             */
            gen_or(b1, b0);

            /*
             * Now check for a data frame.
             * I.e, check "link[0] & 0x08".
             */
            s = gen_load_a(OR_LINK, 0, BPF_B);
            b1 = new_block(JMP(BPF_JSET));
            b1->s.k = 0x08;
            b1->stmts = s;

            /*
             * AND that with the checks done for data frames.
             */
            gen_and(b1, b0);

            /*
             * If the high-order bit of the type value is 0, this
             * is a management frame.
             * I.e, check "!(link[0] & 0x08)".
             */
            s = gen_load_a(OR_LINK, 0, BPF_B);
            b2 = new_block(JMP(BPF_JSET));
            b2->s.k = 0x08;
            b2->stmts = s;
            gen_not(b2);

            /*
             * For management frames, the DA is at 4.
             */
            b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
            gen_and(b2, b1);

            /*
             * OR that with the checks done for data frames.
             * That gives the checks done for management and
             * data frames.
             */
            gen_or(b1, b0);

            /*
             * If the low-order bit of the type value is 1,
             * this is either a control frame or a frame
             * with a reserved type, and thus not a
             * frame with an SA.
             *
             * I.e., check "!(link[0] & 0x04)".
             */
            s = gen_load_a(OR_LINK, 0, BPF_B);
            b1 = new_block(JMP(BPF_JSET));
            b1->s.k = 0x04;
            b1->stmts = s;
            gen_not(b1);

            /*
             * AND that with the checks for data and management
             * frames.
             */
            gen_and(b1, b0);
            return b0;

      /*
       * XXX - add RA, TA, and BSSID keywords?
       */
      case Q_ADDR1:
            return (gen_bcmp(OR_LINK, 4, 6, eaddr));

      case Q_ADDR2:
            /*
             * Not present in CTS or ACK control frames.
             */
            b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
                  IEEE80211_FC0_TYPE_MASK);
            gen_not(b0);
            b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
                  IEEE80211_FC0_SUBTYPE_MASK);
            gen_not(b1);
            b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
                  IEEE80211_FC0_SUBTYPE_MASK);
            gen_not(b2);
            gen_and(b1, b2);
            gen_or(b0, b2);
            b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
            gen_and(b2, b1);
            return b1;

      case Q_ADDR3:
            /*
             * Not present in control frames.
             */
            b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
                  IEEE80211_FC0_TYPE_MASK);
            gen_not(b0);
            b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
            gen_and(b0, b1);
            return b1;

      case Q_ADDR4:
            /*
             * Present only if the direction mask has both "From DS"
             * and "To DS" set.  Neither control frames nor management
             * frames should have both of those set, so we don't
             * check the frame type.
             */
            b0 = gen_mcmp(OR_LINK, 1, BPF_B,
                  IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
            b1 = gen_bcmp(OR_LINK, 24, 6, eaddr);
            gen_and(b0, b1);
            return b1;

      case Q_AND:
            b0 = gen_wlanhostop(eaddr, Q_SRC);
            b1 = gen_wlanhostop(eaddr, Q_DST);
            gen_and(b0, b1);
            return b1;

      case Q_DEFAULT:
      case Q_OR:
            b0 = gen_wlanhostop(eaddr, Q_SRC);
            b1 = gen_wlanhostop(eaddr, Q_DST);
            gen_or(b0, b1);
            return b1;
      }
      abort();
      /* NOTREACHED */
}

/*
 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
 * (We assume that the addresses are IEEE 48-bit MAC addresses,
 * as the RFC states.)
 */
static struct block *
gen_ipfchostop(eaddr, dir)
      register const u_char *eaddr;
      register int dir;
{
      register struct block *b0, *b1;

      switch (dir) {
      case Q_SRC:
            return gen_bcmp(OR_LINK, 10, 6, eaddr);

      case Q_DST:
            return gen_bcmp(OR_LINK, 2, 6, eaddr);

      case Q_AND:
            b0 = gen_ipfchostop(eaddr, Q_SRC);
            b1 = gen_ipfchostop(eaddr, Q_DST);
            gen_and(b0, b1);
            return b1;

      case Q_DEFAULT:
      case Q_OR:
            b0 = gen_ipfchostop(eaddr, Q_SRC);
            b1 = gen_ipfchostop(eaddr, Q_DST);
            gen_or(b0, b1);
            return b1;
      }
      abort();
      /* NOTREACHED */
}

/*
 * This is quite tricky because there may be pad bytes in front of the
 * DECNET header, and then there are two possible data packet formats that
 * carry both src and dst addresses, plus 5 packet types in a format that
 * carries only the src node, plus 2 types that use a different format and
 * also carry just the src node.
 *
 * Yuck.
 *
 * Instead of doing those all right, we just look for data packets with
 * 0 or 1 bytes of padding.  If you want to look at other packets, that
 * will require a lot more hacking.
 *
 * To add support for filtering on DECNET "areas" (network numbers)
 * one would want to add a "mask" argument to this routine.  That would
 * make the filter even more inefficient, although one could be clever
 * and not generate masking instructions if the mask is 0xFFFF.
 */
static struct block *
gen_dnhostop(addr, dir)
      bpf_u_int32 addr;
      int dir;
{
      struct block *b0, *b1, *b2, *tmp;
      u_int offset_lh;  /* offset if long header is received */
      u_int offset_sh;  /* offset if short header is received */

      switch (dir) {

      case Q_DST:
            offset_sh = 1;    /* follows flags */
            offset_lh = 7;    /* flgs,darea,dsubarea,HIORD */
            break;

      case Q_SRC:
            offset_sh = 3;    /* follows flags, dstnode */
            offset_lh = 15;   /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
            break;

      case Q_AND:
            /* Inefficient because we do our Calvinball dance twice */
            b0 = gen_dnhostop(addr, Q_SRC);
            b1 = gen_dnhostop(addr, Q_DST);
            gen_and(b0, b1);
            return b1;

      case Q_OR:
      case Q_DEFAULT:
            /* Inefficient because we do our Calvinball dance twice */
            b0 = gen_dnhostop(addr, Q_SRC);
            b1 = gen_dnhostop(addr, Q_DST);
            gen_or(b0, b1);
            return b1;

      case Q_ISO:
            bpf_error("ISO host filtering not implemented");

      default:
            abort();
      }
      b0 = gen_linktype(ETHERTYPE_DN);
      /* Check for pad = 1, long header case */
      tmp = gen_mcmp(OR_NET, 2, BPF_H,
          (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
      b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
          BPF_H, (bpf_int32)ntohs((u_short)addr));
      gen_and(tmp, b1);
      /* Check for pad = 0, long header case */
      tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
      b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
      gen_and(tmp, b2);
      gen_or(b2, b1);
      /* Check for pad = 1, short header case */
      tmp = gen_mcmp(OR_NET, 2, BPF_H,
          (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
      b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
      gen_and(tmp, b2);
      gen_or(b2, b1);
      /* Check for pad = 0, short header case */
      tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
      b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
      gen_and(tmp, b2);
      gen_or(b2, b1);

      /* Combine with test for linktype */
      gen_and(b0, b1);
      return b1;
}

/*
 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
 * test the bottom-of-stack bit, and then check the version number
 * field in the IP header.
 */
static struct block *
gen_mpls_linktype(proto)
      int proto;
{
      struct block *b0, *b1;

        switch (proto) {

        case Q_IP:
                /* match the bottom-of-stack bit */
                b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
                /* match the IPv4 version number */
                b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
                gen_and(b0, b1);
                return b1;
 
       case Q_IPV6:
                /* match the bottom-of-stack bit */
                b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
                /* match the IPv4 version number */
                b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
                gen_and(b0, b1);
                return b1;
 
       default:
                abort();
        }
}

static struct block *
gen_host(addr, mask, proto, dir, type)
      bpf_u_int32 addr;
      bpf_u_int32 mask;
      int proto;
      int dir;
      int type;
{
      struct block *b0, *b1;
      const char *typestr;

      if (type == Q_NET)
            typestr = "net";
      else
            typestr = "host";

      switch (proto) {

      case Q_DEFAULT:
            b0 = gen_host(addr, mask, Q_IP, dir, type);
            /*
             * Only check for non-IPv4 addresses if we're not
             * checking MPLS-encapsulated packets.
             */
            if (label_stack_depth == 0) {
                  b1 = gen_host(addr, mask, Q_ARP, dir, type);
                  gen_or(b0, b1);
                  b0 = gen_host(addr, mask, Q_RARP, dir, type);
                  gen_or(b1, b0);
            }
            return b0;

      case Q_IP:
            return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);

      case Q_RARP:
            return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);

      case Q_ARP:
            return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);

      case Q_TCP:
            bpf_error("'tcp' modifier applied to %s", typestr);

      case Q_SCTP:
            bpf_error("'sctp' modifier applied to %s", typestr);

      case Q_UDP:
            bpf_error("'udp' modifier applied to %s", typestr);

      case Q_ICMP:
            bpf_error("'icmp' modifier applied to %s", typestr);

      case Q_IGMP:
            bpf_error("'igmp' modifier applied to %s", typestr);

      case Q_IGRP:
            bpf_error("'igrp' modifier applied to %s", typestr);

      case Q_PIM:
            bpf_error("'pim' modifier applied to %s", typestr);

      case Q_VRRP:
            bpf_error("'vrrp' modifier applied to %s", typestr);

      case Q_ATALK:
            bpf_error("ATALK host filtering not implemented");

      case Q_AARP:
            bpf_error("AARP host filtering not implemented");

      case Q_DECNET:
            return gen_dnhostop(addr, dir);

      case Q_SCA:
            bpf_error("SCA host filtering not implemented");

      case Q_LAT:
            bpf_error("LAT host filtering not implemented");

      case Q_MOPDL:
            bpf_error("MOPDL host filtering not implemented");

      case Q_MOPRC:
            bpf_error("MOPRC host filtering not implemented");

#ifdef INET6
      case Q_IPV6:
            bpf_error("'ip6' modifier applied to ip host");

      case Q_ICMPV6:
            bpf_error("'icmp6' modifier applied to %s", typestr);
#endif /* INET6 */

      case Q_AH:
            bpf_error("'ah' modifier applied to %s", typestr);

      case Q_ESP:
            bpf_error("'esp' modifier applied to %s", typestr);

      case Q_ISO:
            bpf_error("ISO host filtering not implemented");

      case Q_ESIS:
            bpf_error("'esis' modifier applied to %s", typestr);

      case Q_ISIS:
            bpf_error("'isis' modifier applied to %s", typestr);

      case Q_CLNP:
            bpf_error("'clnp' modifier applied to %s", typestr);

      case Q_STP:
            bpf_error("'stp' modifier applied to %s", typestr);

      case Q_IPX:
            bpf_error("IPX host filtering not implemented");

      case Q_NETBEUI:
            bpf_error("'netbeui' modifier applied to %s", typestr);

      case Q_RADIO:
            bpf_error("'radio' modifier applied to %s", typestr);

      default:
            abort();
      }
      /* NOTREACHED */
}

#ifdef INET6
static struct block *
gen_host6(addr, mask, proto, dir, type)
      struct in6_addr *addr;
      struct in6_addr *mask;
      int proto;
      int dir;
      int type;
{
      const char *typestr;

      if (type == Q_NET)
            typestr = "net";
      else
            typestr = "host";

      switch (proto) {

      case Q_DEFAULT:
            return gen_host6(addr, mask, Q_IPV6, dir, type);

      case Q_IP:
            bpf_error("'ip' modifier applied to ip6 %s", typestr);

      case Q_RARP:
            bpf_error("'rarp' modifier applied to ip6 %s", typestr);

      case Q_ARP:
            bpf_error("'arp' modifier applied to ip6 %s", typestr);

      case Q_SCTP:
            bpf_error("'sctp' modifier applied to %s", typestr);

      case Q_TCP:
            bpf_error("'tcp' modifier applied to %s", typestr);

      case Q_UDP:
            bpf_error("'udp' modifier applied to %s", typestr);

      case Q_ICMP:
            bpf_error("'icmp' modifier applied to %s", typestr);

      case Q_IGMP:
            bpf_error("'igmp' modifier applied to %s", typestr);

      case Q_IGRP:
            bpf_error("'igrp' modifier applied to %s", typestr);

      case Q_PIM:
            bpf_error("'pim' modifier applied to %s", typestr);

      case Q_VRRP:
            bpf_error("'vrrp' modifier applied to %s", typestr);

      case Q_ATALK:
            bpf_error("ATALK host filtering not implemented");

      case Q_AARP:
            bpf_error("AARP host filtering not implemented");

      case Q_DECNET:
            bpf_error("'decnet' modifier applied to ip6 %s", typestr);

      case Q_SCA:
            bpf_error("SCA host filtering not implemented");

      case Q_LAT:
            bpf_error("LAT host filtering not implemented");

      case Q_MOPDL:
            bpf_error("MOPDL host filtering not implemented");

      case Q_MOPRC:
            bpf_error("MOPRC host filtering not implemented");

      case Q_IPV6:
            return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);

      case Q_ICMPV6:
            bpf_error("'icmp6' modifier applied to %s", typestr);

      case Q_AH:
            bpf_error("'ah' modifier applied to %s", typestr);

      case Q_ESP:
            bpf_error("'esp' modifier applied to %s", typestr);

      case Q_ISO:
            bpf_error("ISO host filtering not implemented");

      case Q_ESIS:
            bpf_error("'esis' modifier applied to %s", typestr);

      case Q_ISIS:
            bpf_error("'isis' modifier applied to %s", typestr);

      case Q_CLNP:
            bpf_error("'clnp' modifier applied to %s", typestr);

      case Q_STP:
            bpf_error("'stp' modifier applied to %s", typestr);

      case Q_IPX:
            bpf_error("IPX host filtering not implemented");

      case Q_NETBEUI:
            bpf_error("'netbeui' modifier applied to %s", typestr);

      case Q_RADIO:
            bpf_error("'radio' modifier applied to %s", typestr);

      default:
            abort();
      }
      /* NOTREACHED */
}
#endif /*INET6*/

#ifndef INET6
static struct block *
gen_gateway(eaddr, alist, proto, dir)
      const u_char *eaddr;
      bpf_u_int32 **alist;
      int proto;
      int dir;
{
      struct block *b0, *b1, *tmp;

      if (dir != 0)
            bpf_error("direction applied to 'gateway'");

      switch (proto) {
      case Q_DEFAULT:
      case Q_IP:
      case Q_ARP:
      case Q_RARP:
            switch (linktype) {
            case DLT_EN10MB:
                  b0 = gen_ehostop(eaddr, Q_OR);
                  break;
            case DLT_FDDI:
                  b0 = gen_fhostop(eaddr, Q_OR);
                  break;
            case DLT_IEEE802:
                  b0 = gen_thostop(eaddr, Q_OR);
                  break;
            case DLT_IEEE802_11:
            case DLT_PRISM_HEADER:
            case DLT_IEEE802_11_RADIO_AVS:
            case DLT_IEEE802_11_RADIO:
            case DLT_PPI:
                  b0 = gen_wlanhostop(eaddr, Q_OR);
                  break;
            case DLT_SUNATM:
                  if (is_lane) {
                        /*
                         * Check that the packet doesn't begin with an
                         * LE Control marker.  (We've already generated
                         * a test for LANE.)
                         */
                        b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
                            BPF_H, 0xFF00);
                        gen_not(b1);

                        /*
                         * Now check the MAC address.
                         */
                        b0 = gen_ehostop(eaddr, Q_OR);
                        gen_and(b1, b0);
                  }
                  break;
            case DLT_IP_OVER_FC:
                  b0 = gen_ipfchostop(eaddr, Q_OR);
                  break;
            default:
                  bpf_error(
                      "'gateway' supported only on ethernet/FDDI/token ring/802.11/Fibre Channel");
            }
            b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
            while (*alist) {
                  tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
                      Q_HOST);
                  gen_or(b1, tmp);
                  b1 = tmp;
            }
            gen_not(b1);
            gen_and(b0, b1);
            return b1;
      }
      bpf_error("illegal modifier of 'gateway'");
      /* NOTREACHED */
}
#endif

struct block *
gen_proto_abbrev(proto)
      int proto;
{
      struct block *b0;
      struct block *b1;

      switch (proto) {

      case Q_SCTP:
            b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
#ifdef INET6
            b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
            gen_or(b0, b1);
#endif
            break;

      case Q_TCP:
            b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
#ifdef INET6
            b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
            gen_or(b0, b1);
#endif
            break;

      case Q_UDP:
            b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
#ifdef INET6
            b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
            gen_or(b0, b1);
#endif
            break;

      case Q_ICMP:
            b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
            break;

#ifndef     IPPROTO_IGMP
#define     IPPROTO_IGMP      2
#endif

      case Q_IGMP:
            b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
            break;

#ifndef     IPPROTO_IGRP
#define     IPPROTO_IGRP      9
#endif
      case Q_IGRP:
            b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
            break;

#ifndef IPPROTO_PIM
#define IPPROTO_PIM     103
#endif

      case Q_PIM:
            b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
#ifdef INET6
            b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
            gen_or(b0, b1);
#endif
            break;

#ifndef IPPROTO_VRRP
#define IPPROTO_VRRP    112
#endif

      case Q_VRRP:
            b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
            break;

      case Q_IP:
            b1 =  gen_linktype(ETHERTYPE_IP);
            break;

      case Q_ARP:
            b1 =  gen_linktype(ETHERTYPE_ARP);
            break;

      case Q_RARP:
            b1 =  gen_linktype(ETHERTYPE_REVARP);
            break;

      case Q_LINK:
            bpf_error("link layer applied in wrong context");

      case Q_ATALK:
            b1 =  gen_linktype(ETHERTYPE_ATALK);
            break;

      case Q_AARP:
            b1 =  gen_linktype(ETHERTYPE_AARP);
            break;

      case Q_DECNET:
            b1 =  gen_linktype(ETHERTYPE_DN);
            break;

      case Q_SCA:
            b1 =  gen_linktype(ETHERTYPE_SCA);
            break;

      case Q_LAT:
            b1 =  gen_linktype(ETHERTYPE_LAT);
            break;

      case Q_MOPDL:
            b1 =  gen_linktype(ETHERTYPE_MOPDL);
            break;

      case Q_MOPRC:
            b1 =  gen_linktype(ETHERTYPE_MOPRC);
            break;

#ifdef INET6
      case Q_IPV6:
            b1 = gen_linktype(ETHERTYPE_IPV6);
            break;

#ifndef IPPROTO_ICMPV6
#define IPPROTO_ICMPV6  58
#endif
      case Q_ICMPV6:
            b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
            break;
#endif /* INET6 */

#ifndef IPPROTO_AH
#define IPPROTO_AH      51
#endif
      case Q_AH:
            b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
#ifdef INET6
            b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
            gen_or(b0, b1);
#endif
            break;

#ifndef IPPROTO_ESP
#define IPPROTO_ESP     50
#endif
      case Q_ESP:
            b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
#ifdef INET6
            b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
            gen_or(b0, b1);
#endif
            break;

      case Q_ISO:
            b1 = gen_linktype(LLCSAP_ISONS);
            break;

      case Q_ESIS:
            b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
            break;

      case Q_ISIS:
            b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
            break;

      case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
            b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
            b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
            gen_or(b0, b1);
            b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
            gen_or(b0, b1);
            b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
            gen_or(b0, b1);
            b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
            gen_or(b0, b1);
            break;

      case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
            b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
            b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
            gen_or(b0, b1);
            b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
            gen_or(b0, b1);
            b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
            gen_or(b0, b1);
            b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
            gen_or(b0, b1);
            break;

      case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
            b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
            b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
            gen_or(b0, b1);
            b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
            gen_or(b0, b1);
            break;

      case Q_ISIS_LSP:
            b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
            b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
            gen_or(b0, b1);
            break;

      case Q_ISIS_SNP:
            b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
            b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
            gen_or(b0, b1);
            b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
            gen_or(b0, b1);
            b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
            gen_or(b0, b1);
            break;

      case Q_ISIS_CSNP:
            b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
            b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
            gen_or(b0, b1);
            break;

      case Q_ISIS_PSNP:
            b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
            b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
            gen_or(b0, b1);
            break;

      case Q_CLNP:
            b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
            break;

      case Q_STP:
            b1 = gen_linktype(LLCSAP_8021D);
            break;

      case Q_IPX:
            b1 = gen_linktype(LLCSAP_IPX);
            break;

      case Q_NETBEUI:
            b1 = gen_linktype(LLCSAP_NETBEUI);
            break;

      case Q_RADIO:
            bpf_error("'radio' is not a valid protocol type");

      default:
            abort();
      }
      return b1;
}

static struct block *
gen_ipfrag()
{
      struct slist *s;
      struct block *b;

      /* not ip frag */
      s = gen_load_a(OR_NET, 6, BPF_H);
      b = new_block(JMP(BPF_JSET));
      b->s.k = 0x1fff;
      b->stmts = s;
      gen_not(b);

      return b;
}

/*
 * Generate a comparison to a port value in the transport-layer header
 * at the specified offset from the beginning of that header.
 *
 * XXX - this handles a variable-length prefix preceding the link-layer
 * header, such as the radiotap or AVS radio prefix, but doesn't handle
 * variable-length link-layer headers (such as Token Ring or 802.11
 * headers).
 */
static struct block *
gen_portatom(off, v)
      int off;
      bpf_int32 v;
{
      return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
}

#ifdef INET6
static struct block *
gen_portatom6(off, v)
      int off;
      bpf_int32 v;
{
      return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
}
#endif/*INET6*/

struct block *
gen_portop(port, proto, dir)
      int port, proto, dir;
{
      struct block *b0, *b1, *tmp;

      /* ip proto 'proto' */
      tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
      b0 = gen_ipfrag();
      gen_and(tmp, b0);

      switch (dir) {
      case Q_SRC:
            b1 = gen_portatom(0, (bpf_int32)port);
            break;

      case Q_DST:
            b1 = gen_portatom(2, (bpf_int32)port);
            break;

      case Q_OR:
      case Q_DEFAULT:
            tmp = gen_portatom(0, (bpf_int32)port);
            b1 = gen_portatom(2, (bpf_int32)port);
            gen_or(tmp, b1);
            break;

      case Q_AND:
            tmp = gen_portatom(0, (bpf_int32)port);
            b1 = gen_portatom(2, (bpf_int32)port);
            gen_and(tmp, b1);
            break;

      default:
            abort();
      }
      gen_and(b0, b1);

      return b1;
}

static struct block *
gen_port(port, ip_proto, dir)
      int port;
      int ip_proto;
      int dir;
{
      struct block *b0, *b1, *tmp;

      /*
       * ether proto ip
       *
       * For FDDI, RFC 1188 says that SNAP encapsulation is used,
       * not LLC encapsulation with LLCSAP_IP.
       *
       * For IEEE 802 networks - which includes 802.5 token ring
       * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
       * says that SNAP encapsulation is used, not LLC encapsulation
       * with LLCSAP_IP.
       *
       * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
       * RFC 2225 say that SNAP encapsulation is used, not LLC
       * encapsulation with LLCSAP_IP.
       *
       * So we always check for ETHERTYPE_IP.
       */
      b0 =  gen_linktype(ETHERTYPE_IP);

      switch (ip_proto) {
      case IPPROTO_UDP:
      case IPPROTO_TCP:
      case IPPROTO_SCTP:
            b1 = gen_portop(port, ip_proto, dir);
            break;

      case PROTO_UNDEF:
            tmp = gen_portop(port, IPPROTO_TCP, dir);
            b1 = gen_portop(port, IPPROTO_UDP, dir);
            gen_or(tmp, b1);
            tmp = gen_portop(port, IPPROTO_SCTP, dir);
            gen_or(tmp, b1);
            break;

      default:
            abort();
      }
      gen_and(b0, b1);
      return b1;
}

#ifdef INET6
struct block *
gen_portop6(port, proto, dir)
      int port, proto, dir;
{
      struct block *b0, *b1, *tmp;

      /* ip6 proto 'proto' */
      b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);

      switch (dir) {
      case Q_SRC:
            b1 = gen_portatom6(0, (bpf_int32)port);
            break;

      case Q_DST:
            b1 = gen_portatom6(2, (bpf_int32)port);
            break;

      case Q_OR:
      case Q_DEFAULT:
            tmp = gen_portatom6(0, (bpf_int32)port);
            b1 = gen_portatom6(2, (bpf_int32)port);
            gen_or(tmp, b1);
            break;

      case Q_AND:
            tmp = gen_portatom6(0, (bpf_int32)port);
            b1 = gen_portatom6(2, (bpf_int32)port);
            gen_and(tmp, b1);
            break;

      default:
            abort();
      }
      gen_and(b0, b1);

      return b1;
}

static struct block *
gen_port6(port, ip_proto, dir)
      int port;
      int ip_proto;
      int dir;
{
      struct block *b0, *b1, *tmp;

      /* link proto ip6 */
      b0 =  gen_linktype(ETHERTYPE_IPV6);

      switch (ip_proto) {
      case IPPROTO_UDP:
      case IPPROTO_TCP:
      case IPPROTO_SCTP:
            b1 = gen_portop6(port, ip_proto, dir);
            break;

      case PROTO_UNDEF:
            tmp = gen_portop6(port, IPPROTO_TCP, dir);
            b1 = gen_portop6(port, IPPROTO_UDP, dir);
            gen_or(tmp, b1);
            tmp = gen_portop6(port, IPPROTO_SCTP, dir);
            gen_or(tmp, b1);
            break;

      default:
            abort();
      }
      gen_and(b0, b1);
      return b1;
}
#endif /* INET6 */

/* gen_portrange code */
static struct block *
gen_portrangeatom(off, v1, v2)
      int off;
      bpf_int32 v1, v2;
{
      struct block *b1, *b2;

      if (v1 > v2) {
            /*
             * Reverse the order of the ports, so v1 is the lower one.
             */
            bpf_int32 vtemp;

            vtemp = v1;
            v1 = v2;
            v2 = vtemp;
      }

      b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
      b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);

      gen_and(b1, b2); 

      return b2;
}

struct block *
gen_portrangeop(port1, port2, proto, dir)
      int port1, port2;
      int proto;
      int dir;
{
      struct block *b0, *b1, *tmp;

      /* ip proto 'proto' */
      tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
      b0 = gen_ipfrag();
      gen_and(tmp, b0);

      switch (dir) {
      case Q_SRC:
            b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
            break;

      case Q_DST:
            b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
            break;

      case Q_OR:
      case Q_DEFAULT:
            tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
            b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
            gen_or(tmp, b1);
            break;

      case Q_AND:
            tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
            b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
            gen_and(tmp, b1);
            break;

      default:
            abort();
      }
      gen_and(b0, b1);

      return b1;
}

static struct block *
gen_portrange(port1, port2, ip_proto, dir)
      int port1, port2;
      int ip_proto;
      int dir;
{
      struct block *b0, *b1, *tmp;

      /* link proto ip */
      b0 =  gen_linktype(ETHERTYPE_IP);

      switch (ip_proto) {
      case IPPROTO_UDP:
      case IPPROTO_TCP:
      case IPPROTO_SCTP:
            b1 = gen_portrangeop(port1, port2, ip_proto, dir);
            break;

      case PROTO_UNDEF:
            tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
            b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
            gen_or(tmp, b1);
            tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
            gen_or(tmp, b1);
            break;

      default:
            abort();
      }
      gen_and(b0, b1);
      return b1;
}

#ifdef INET6
static struct block *
gen_portrangeatom6(off, v1, v2)
      int off;
      bpf_int32 v1, v2;
{
      struct block *b1, *b2;

      if (v1 > v2) {
            /*
             * Reverse the order of the ports, so v1 is the lower one.
             */
            bpf_int32 vtemp;

            vtemp = v1;
            v1 = v2;
            v2 = vtemp;
      }

      b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
      b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);

      gen_and(b1, b2); 

      return b2;
}

struct block *
gen_portrangeop6(port1, port2, proto, dir)
      int port1, port2;
      int proto;
      int dir;
{
      struct block *b0, *b1, *tmp;

      /* ip6 proto 'proto' */
      b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);

      switch (dir) {
      case Q_SRC:
            b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
            break;

      case Q_DST:
            b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
            break;

      case Q_OR:
      case Q_DEFAULT:
            tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
            b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
            gen_or(tmp, b1);
            break;

      case Q_AND:
            tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
            b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
            gen_and(tmp, b1);
            break;

      default:
            abort();
      }
      gen_and(b0, b1);

      return b1;
}

static struct block *
gen_portrange6(port1, port2, ip_proto, dir)
      int port1, port2;
      int ip_proto;
      int dir;
{
      struct block *b0, *b1, *tmp;

      /* link proto ip6 */
      b0 =  gen_linktype(ETHERTYPE_IPV6);

      switch (ip_proto) {
      case IPPROTO_UDP:
      case IPPROTO_TCP:
      case IPPROTO_SCTP:
            b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
            break;

      case PROTO_UNDEF:
            tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
            b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
            gen_or(tmp, b1);
            tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
            gen_or(tmp, b1);
            break;

      default:
            abort();
      }
      gen_and(b0, b1);
      return b1;
}
#endif /* INET6 */

static int
lookup_proto(name, proto)
      register const char *name;
      register int proto;
{
      register int v;

      switch (proto) {

      case Q_DEFAULT:
      case Q_IP:
      case Q_IPV6:
            v = pcap_nametoproto(name);
            if (v == PROTO_UNDEF)
                  bpf_error("unknown ip proto '%s'", name);
            break;

      case Q_LINK:
            /* XXX should look up h/w protocol type based on linktype */
            v = pcap_nametoeproto(name);
            if (v == PROTO_UNDEF) {
                  v = pcap_nametollc(name);
                  if (v == PROTO_UNDEF)
                        bpf_error("unknown ether proto '%s'", name);
            }
            break;

      case Q_ISO:
            if (strcmp(name, "esis") == 0)
                  v = ISO9542_ESIS;
            else if (strcmp(name, "isis") == 0)
                  v = ISO10589_ISIS;
            else if (strcmp(name, "clnp") == 0)
                  v = ISO8473_CLNP;
            else
                  bpf_error("unknown osi proto '%s'", name);
            break;

      default:
            v = PROTO_UNDEF;
            break;
      }
      return v;
}

#if 0
struct stmt *
gen_joinsp(s, n)
      struct stmt **s;
      int n;
{
      return NULL;
}
#endif

static struct block *
gen_protochain(v, proto, dir)
      int v;
      int proto;
      int dir;
{
#ifdef NO_PROTOCHAIN
      return gen_proto(v, proto, dir);
#else
      struct block *b0, *b;
      struct slist *s[100];
      int fix2, fix3, fix4, fix5;
      int ahcheck, again, end;
      int i, max;
      int reg2 = alloc_reg();

      memset(s, 0, sizeof(s));
      fix2 = fix3 = fix4 = fix5 = 0;

      switch (proto) {
      case Q_IP:
      case Q_IPV6:
            break;
      case Q_DEFAULT:
            b0 = gen_protochain(v, Q_IP, dir);
            b = gen_protochain(v, Q_IPV6, dir);
            gen_or(b0, b);
            return b;
      default:
            bpf_error("bad protocol applied for 'protochain'");
            /*NOTREACHED*/
      }

      /*
       * We don't handle variable-length prefixes before the link-layer
       * header, or variable-length link-layer headers, here yet.
       * We might want to add BPF instructions to do the protochain
       * work, to simplify that and, on platforms that have a BPF
       * interpreter with the new instructions, let the filtering
       * be done in the kernel.  (We already require a modified BPF
       * engine to do the protochain stuff, to support backward
       * branches, and backward branch support is unlikely to appear
       * in kernel BPF engines.)
       */
      switch (linktype) {

      case DLT_IEEE802_11:
      case DLT_PRISM_HEADER:
      case DLT_IEEE802_11_RADIO_AVS:
      case DLT_IEEE802_11_RADIO:
      case DLT_PPI:
            bpf_error("'protochain' not supported with 802.11");
      }

      no_optimize = 1; /*this code is not compatible with optimzer yet */

      /*
       * s[0] is a dummy entry to protect other BPF insn from damage
       * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
       * hard to find interdependency made by jump table fixup.
       */
      i = 0;
      s[i] = new_stmt(0);     /*dummy*/
      i++;

      switch (proto) {
      case Q_IP:
            b0 = gen_linktype(ETHERTYPE_IP);

            /* A = ip->ip_p */
            s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
            s[i]->s.k = off_macpl + off_nl + 9;
            i++;
            /* X = ip->ip_hl << 2 */
            s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
            s[i]->s.k = off_macpl + off_nl;
            i++;
            break;
#ifdef INET6
      case Q_IPV6:
            b0 = gen_linktype(ETHERTYPE_IPV6);

            /* A = ip6->ip_nxt */
            s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
            s[i]->s.k = off_macpl + off_nl + 6;
            i++;
            /* X = sizeof(struct ip6_hdr) */
            s[i] = new_stmt(BPF_LDX|BPF_IMM);
            s[i]->s.k = 40;
            i++;
            break;
#endif
      default:
            bpf_error("unsupported proto to gen_protochain");
            /*NOTREACHED*/
      }

      /* again: if (A == v) goto end; else fall through; */
      again = i;
      s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
      s[i]->s.k = v;
      s[i]->s.jt = NULL;            /*later*/
      s[i]->s.jf = NULL;            /*update in next stmt*/
      fix5 = i;
      i++;

#ifndef IPPROTO_NONE
#define IPPROTO_NONE    59
#endif
      /* if (A == IPPROTO_NONE) goto end */
      s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
      s[i]->s.jt = NULL;      /*later*/
      s[i]->s.jf = NULL;      /*update in next stmt*/
      s[i]->s.k = IPPROTO_NONE;
      s[fix5]->s.jf = s[i];
      fix2 = i;
      i++;

#ifdef INET6
      if (proto == Q_IPV6) {
            int v6start, v6end, v6advance, j;

            v6start = i;
            /* if (A == IPPROTO_HOPOPTS) goto v6advance */
            s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
            s[i]->s.jt = NULL;      /*later*/
            s[i]->s.jf = NULL;      /*update in next stmt*/
            s[i]->s.k = IPPROTO_HOPOPTS;
            s[fix2]->s.jf = s[i];
            i++;
            /* if (A == IPPROTO_DSTOPTS) goto v6advance */
            s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
            s[i]->s.jt = NULL;      /*later*/
            s[i]->s.jf = NULL;      /*update in next stmt*/
            s[i]->s.k = IPPROTO_DSTOPTS;
            i++;
            /* if (A == IPPROTO_ROUTING) goto v6advance */
            s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
            s[i]->s.jt = NULL;      /*later*/
            s[i]->s.jf = NULL;      /*update in next stmt*/
            s[i]->s.k = IPPROTO_ROUTING;
            i++;
            /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
            s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
            s[i]->s.jt = NULL;      /*later*/
            s[i]->s.jf = NULL;      /*later*/
            s[i]->s.k = IPPROTO_FRAGMENT;
            fix3 = i;
            v6end = i;
            i++;

            /* v6advance: */
            v6advance = i;

            /*
             * in short,
             * A = P[X];
             * X = X + (P[X + 1] + 1) * 8;
             */
            /* A = X */
            s[i] = new_stmt(BPF_MISC|BPF_TXA);
            i++;
            /* A = P[X + packet head] */
            s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
            s[i]->s.k = off_macpl + off_nl;
            i++;
            /* MEM[reg2] = A */
            s[i] = new_stmt(BPF_ST);
            s[i]->s.k = reg2;
            i++;
            /* A = X */
            s[i] = new_stmt(BPF_MISC|BPF_TXA);
            i++;
            /* A += 1 */
            s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
            s[i]->s.k = 1;
            i++;
            /* X = A */
            s[i] = new_stmt(BPF_MISC|BPF_TAX);
            i++;
            /* A = P[X + packet head]; */
            s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
            s[i]->s.k = off_macpl + off_nl;
            i++;
            /* A += 1 */
            s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
            s[i]->s.k = 1;
            i++;
            /* A *= 8 */
            s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
            s[i]->s.k = 8;
            i++;
            /* X = A; */
            s[i] = new_stmt(BPF_MISC|BPF_TAX);
            i++;
            /* A = MEM[reg2] */
            s[i] = new_stmt(BPF_LD|BPF_MEM);
            s[i]->s.k = reg2;
            i++;

            /* goto again; (must use BPF_JA for backward jump) */
            s[i] = new_stmt(BPF_JMP|BPF_JA);
            s[i]->s.k = again - i - 1;
            s[i - 1]->s.jf = s[i];
            i++;

            /* fixup */
            for (j = v6start; j <= v6end; j++)
                  s[j]->s.jt = s[v6advance];
      } else
#endif
      {
            /* nop */
            s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
            s[i]->s.k = 0;
            s[fix2]->s.jf = s[i];
            i++;
      }

      /* ahcheck: */
      ahcheck = i;
      /* if (A == IPPROTO_AH) then fall through; else goto end; */
      s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
      s[i]->s.jt = NULL;      /*later*/
      s[i]->s.jf = NULL;      /*later*/
      s[i]->s.k = IPPROTO_AH;
      if (fix3)
            s[fix3]->s.jf = s[ahcheck];
      fix4 = i;
      i++;

      /*
       * in short,
       * A = P[X];
       * X = X + (P[X + 1] + 2) * 4;
       */
      /* A = X */
      s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
      i++;
      /* A = P[X + packet head]; */
      s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
      s[i]->s.k = off_macpl + off_nl;
      i++;
      /* MEM[reg2] = A */
      s[i] = new_stmt(BPF_ST);
      s[i]->s.k = reg2;
      i++;
      /* A = X */
      s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
      i++;
      /* A += 1 */
      s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
      s[i]->s.k = 1;
      i++;
      /* X = A */
      s[i] = new_stmt(BPF_MISC|BPF_TAX);
      i++;
      /* A = P[X + packet head] */
      s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
      s[i]->s.k = off_macpl + off_nl;
      i++;
      /* A += 2 */
      s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
      s[i]->s.k = 2;
      i++;
      /* A *= 4 */
      s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
      s[i]->s.k = 4;
      i++;
      /* X = A; */
      s[i] = new_stmt(BPF_MISC|BPF_TAX);
      i++;
      /* A = MEM[reg2] */
      s[i] = new_stmt(BPF_LD|BPF_MEM);
      s[i]->s.k = reg2;
      i++;

      /* goto again; (must use BPF_JA for backward jump) */
      s[i] = new_stmt(BPF_JMP|BPF_JA);
      s[i]->s.k = again - i - 1;
      i++;

      /* end: nop */
      end = i;
      s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
      s[i]->s.k = 0;
      s[fix2]->s.jt = s[end];
      s[fix4]->s.jf = s[end];
      s[fix5]->s.jt = s[end];
      i++;

      /*
       * make slist chain
       */
      max = i;
      for (i = 0; i < max - 1; i++)
            s[i]->next = s[i + 1];
      s[max - 1]->next = NULL;

      /*
       * emit final check
       */
      b = new_block(JMP(BPF_JEQ));
      b->stmts = s[1];  /*remember, s[0] is dummy*/
      b->s.k = v;

      free_reg(reg2);

      gen_and(b0, b);
      return b;
#endif
}

static struct block *
gen_check_802_11_data_frame()
{
      struct slist *s;
      struct block *b0, *b1;

      /*
       * A data frame has the 0x08 bit (b3) in the frame control field set
       * and the 0x04 bit (b2) clear.
       */
      s = gen_load_a(OR_LINK, 0, BPF_B);
      b0 = new_block(JMP(BPF_JSET));
      b0->s.k = 0x08;
      b0->stmts = s;
      
      s = gen_load_a(OR_LINK, 0, BPF_B);
      b1 = new_block(JMP(BPF_JSET));
      b1->s.k = 0x04;
      b1->stmts = s;
      gen_not(b1);

      gen_and(b1, b0);

      return b0;
}

/*
 * Generate code that checks whether the packet is a packet for protocol
 * <proto> and whether the type field in that protocol's header has
 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
 * IP packet and checks the protocol number in the IP header against <v>.
 *
 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
 * against Q_IP and Q_IPV6.
 */
static struct block *
gen_proto(v, proto, dir)
      int v;
      int proto;
      int dir;
{
      struct block *b0, *b1;

      if (dir != Q_DEFAULT)
            bpf_error("direction applied to 'proto'");

      switch (proto) {
      case Q_DEFAULT:
#ifdef INET6
            b0 = gen_proto(v, Q_IP, dir);
            b1 = gen_proto(v, Q_IPV6, dir);
            gen_or(b0, b1);
            return b1;
#else
            /*FALLTHROUGH*/
#endif
      case Q_IP:
            /*
             * For FDDI, RFC 1188 says that SNAP encapsulation is used,
             * not LLC encapsulation with LLCSAP_IP.
             *
             * For IEEE 802 networks - which includes 802.5 token ring
             * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
             * says that SNAP encapsulation is used, not LLC encapsulation
             * with LLCSAP_IP.
             *
             * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
             * RFC 2225 say that SNAP encapsulation is used, not LLC
             * encapsulation with LLCSAP_IP.
             *
             * So we always check for ETHERTYPE_IP.
             */
            b0 = gen_linktype(ETHERTYPE_IP);
#ifndef CHASE_CHAIN
            b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
#else
            b1 = gen_protochain(v, Q_IP);
#endif
            gen_and(b0, b1);
            return b1;

      case Q_ISO:
            switch (linktype) {

            case DLT_FRELAY:
                  /*
                   * Frame Relay packets typically have an OSI
                   * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
                   * generates code to check for all the OSI
                   * NLPIDs, so calling it and then adding a check
                   * for the particular NLPID for which we're
                   * looking is bogus, as we can just check for
                   * the NLPID.
                   *
                   * What we check for is the NLPID and a frame
                   * control field value of UI, i.e. 0x03 followed
                   * by the NLPID.
                   *
                   * XXX - assumes a 2-byte Frame Relay header with
                   * DLCI and flags.  What if the address is longer?
                   *
                   * XXX - what about SNAP-encapsulated frames?
                   */
                  return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
                  /*NOTREACHED*/
                  break;

            case DLT_C_HDLC:
                  /*
                   * Cisco uses an Ethertype lookalike - for OSI,
                   * it's 0xfefe.
                   */
                  b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
                  /* OSI in C-HDLC is stuffed with a fudge byte */
                  b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
                  gen_and(b0, b1);
                  return b1;

            default:
                  b0 = gen_linktype(LLCSAP_ISONS);
                  b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
                  gen_and(b0, b1);
                  return b1;
            }

      case Q_ISIS:
            b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
            /*
             * 4 is the offset of the PDU type relative to the IS-IS
             * header.
             */
            b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
            gen_and(b0, b1);
            return b1;

      case Q_ARP:
            bpf_error("arp does not encapsulate another protocol");
            /* NOTREACHED */

      case Q_RARP:
            bpf_error("rarp does not encapsulate another protocol");
            /* NOTREACHED */

      case Q_ATALK:
            bpf_error("atalk encapsulation is not specifiable");
            /* NOTREACHED */

      case Q_DECNET:
            bpf_error("decnet encapsulation is not specifiable");
            /* NOTREACHED */

      case Q_SCA:
            bpf_error("sca does not encapsulate another protocol");
            /* NOTREACHED */

      case Q_LAT:
            bpf_error("lat does not encapsulate another protocol");
            /* NOTREACHED */

      case Q_MOPRC:
            bpf_error("moprc does not encapsulate another protocol");
            /* NOTREACHED */

      case Q_MOPDL:
            bpf_error("mopdl does not encapsulate another protocol");
            /* NOTREACHED */

      case Q_LINK:
            return gen_linktype(v);

      case Q_UDP:
            bpf_error("'udp proto' is bogus");
            /* NOTREACHED */

      case Q_TCP:
            bpf_error("'tcp proto' is bogus");
            /* NOTREACHED */

      case Q_SCTP:
            bpf_error("'sctp proto' is bogus");
            /* NOTREACHED */

      case Q_ICMP:
            bpf_error("'icmp proto' is bogus");
            /* NOTREACHED */

      case Q_IGMP:
            bpf_error("'igmp proto' is bogus");
            /* NOTREACHED */

      case Q_IGRP:
            bpf_error("'igrp proto' is bogus");
            /* NOTREACHED */

      case Q_PIM:
            bpf_error("'pim proto' is bogus");
            /* NOTREACHED */

      case Q_VRRP:
            bpf_error("'vrrp proto' is bogus");
            /* NOTREACHED */

#ifdef INET6
      case Q_IPV6:
            b0 = gen_linktype(ETHERTYPE_IPV6);
#ifndef CHASE_CHAIN
            b1 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
#else
            b1 = gen_protochain(v, Q_IPV6);
#endif
            gen_and(b0, b1);
            return b1;

      case Q_ICMPV6:
            bpf_error("'icmp6 proto' is bogus");
#endif /* INET6 */

      case Q_AH:
            bpf_error("'ah proto' is bogus");

      case Q_ESP:
            bpf_error("'ah proto' is bogus");

      case Q_STP:
            bpf_error("'stp proto' is bogus");

      case Q_IPX:
            bpf_error("'ipx proto' is bogus");

      case Q_NETBEUI:
            bpf_error("'netbeui proto' is bogus");

      case Q_RADIO:
            bpf_error("'radio proto' is bogus");

      default:
            abort();
            /* NOTREACHED */
      }
      /* NOTREACHED */
}

struct block *
gen_scode(name, q)
      register const char *name;
      struct qual q;
{
      int proto = q.proto;
      int dir = q.dir;
      int tproto;
      u_char *eaddr;
      bpf_u_int32 mask, addr;
#ifndef INET6
      bpf_u_int32 **alist;
#else
      int tproto6;
      struct sockaddr_in *sin4;
      struct sockaddr_in6 *sin6;
      struct addrinfo *res, *res0;
      struct in6_addr mask128;
#endif /*INET6*/
      struct block *b, *tmp;
      int port, real_proto;
      int port1, port2;

      switch (q.addr) {

      case Q_NET:
            addr = pcap_nametonetaddr(name);
            if (addr == 0)
                  bpf_error("unknown network '%s'", name);
            /* Left justify network addr and calculate its network mask */
            mask = 0xffffffff;
            while (addr && (addr & 0xff000000) == 0) {
                  addr <<= 8;
                  mask <<= 8;
            }
            return gen_host(addr, mask, proto, dir, q.addr);

      case Q_DEFAULT:
      case Q_HOST:
            if (proto == Q_LINK) {
                  switch (linktype) {

                  case DLT_EN10MB:
                        eaddr = pcap_ether_hostton(name);
                        if (eaddr == NULL)
                              bpf_error(
                                  "unknown ether host '%s'", name);
                        b = gen_ehostop(eaddr, dir);
                        free(eaddr);
                        return b;

                  case DLT_FDDI:
                        eaddr = pcap_ether_hostton(name);
                        if (eaddr == NULL)
                              bpf_error(
                                  "unknown FDDI host '%s'", name);
                        b = gen_fhostop(eaddr, dir);
                        free(eaddr);
                        return b;

                  case DLT_IEEE802:
                        eaddr = pcap_ether_hostton(name);
                        if (eaddr == NULL)
                              bpf_error(
                                  "unknown token ring host '%s'", name);
                        b = gen_thostop(eaddr, dir);
                        free(eaddr);
                        return b;

                  case DLT_IEEE802_11:
                  case DLT_PRISM_HEADER:
                  case DLT_IEEE802_11_RADIO_AVS:
                  case DLT_IEEE802_11_RADIO:
                  case DLT_PPI:
                        eaddr = pcap_ether_hostton(name);
                        if (eaddr == NULL)
                              bpf_error(
                                  "unknown 802.11 host '%s'", name);
                        b = gen_wlanhostop(eaddr, dir);
                        free(eaddr);
                        return b;

                  case DLT_IP_OVER_FC:
                        eaddr = pcap_ether_hostton(name);
                        if (eaddr == NULL)
                              bpf_error(
                                  "unknown Fibre Channel host '%s'", name);
                        b = gen_ipfchostop(eaddr, dir);
                        free(eaddr);
                        return b;

                  case DLT_SUNATM:
                        if (!is_lane)
                              break;

                        /*
                         * Check that the packet doesn't begin
                         * with an LE Control marker.  (We've
                         * already generated a test for LANE.)
                         */
                        tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
                            BPF_H, 0xFF00);
                        gen_not(tmp);

                        eaddr = pcap_ether_hostton(name);
                        if (eaddr == NULL)
                              bpf_error(
                                  "unknown ether host '%s'", name);
                        b = gen_ehostop(eaddr, dir);
                        gen_and(tmp, b);
                        free(eaddr);
                        return b;
                  }

                  bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
            } else if (proto == Q_DECNET) {
                  unsigned short dn_addr = __pcap_nametodnaddr(name);
                  /*
                   * I don't think DECNET hosts can be multihomed, so
                   * there is no need to build up a list of addresses
                   */
                  return (gen_host(dn_addr, 0, proto, dir, q.addr));
            } else {
#ifndef INET6
                  alist = pcap_nametoaddr(name);
                  if (alist == NULL || *alist == NULL)
                        bpf_error("unknown host '%s'", name);
                  tproto = proto;
                  if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
                        tproto = Q_IP;
                  b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
                  while (*alist) {
                        tmp = gen_host(**alist++, 0xffffffff,
                                     tproto, dir, q.addr);
                        gen_or(b, tmp);
                        b = tmp;
                  }
                  return b;
#else
                  memset(&mask128, 0xff, sizeof(mask128));
                  res0 = res = pcap_nametoaddrinfo(name);
                  if (res == NULL)
                        bpf_error("unknown host '%s'", name);
                  b = tmp = NULL;
                  tproto = tproto6 = proto;
                  if (off_linktype == -1 && tproto == Q_DEFAULT) {
                        tproto = Q_IP;
                        tproto6 = Q_IPV6;
                  }
                  for (res = res0; res; res = res->ai_next) {
                        switch (res->ai_family) {
                        case AF_INET:
                              if (tproto == Q_IPV6)
                                    continue;

                              sin4 = (struct sockaddr_in *)
                                    res->ai_addr;
                              tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
                                    0xffffffff, tproto, dir, q.addr);
                              break;
                        case AF_INET6:
                              if (tproto6 == Q_IP)
                                    continue;

                              sin6 = (struct sockaddr_in6 *)
                                    res->ai_addr;
                              tmp = gen_host6(&sin6->sin6_addr,
                                    &mask128, tproto6, dir, q.addr);
                              break;
                        default:
                              continue;
                        }
                        if (b)
                              gen_or(b, tmp);
                        b = tmp;
                  }
                  freeaddrinfo(res0);
                  if (b == NULL) {
                        bpf_error("unknown host '%s'%s", name,
                            (proto == Q_DEFAULT)
                              ? ""
                              : " for specified address family");
                  }
                  return b;
#endif /*INET6*/
            }

      case Q_PORT:
            if (proto != Q_DEFAULT &&
                proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
                  bpf_error("illegal qualifier of 'port'");
            if (pcap_nametoport(name, &port, &real_proto) == 0)
                  bpf_error("unknown port '%s'", name);
            if (proto == Q_UDP) {
                  if (real_proto == IPPROTO_TCP)
                        bpf_error("port '%s' is tcp", name);
                  else if (real_proto == IPPROTO_SCTP)
                        bpf_error("port '%s' is sctp", name);
                  else
                        /* override PROTO_UNDEF */
                        real_proto = IPPROTO_UDP;
            }
            if (proto == Q_TCP) {
                  if (real_proto == IPPROTO_UDP)
                        bpf_error("port '%s' is udp", name);

                  else if (real_proto == IPPROTO_SCTP)
                        bpf_error("port '%s' is sctp", name);
                  else
                        /* override PROTO_UNDEF */
                        real_proto = IPPROTO_TCP;
            }
            if (proto == Q_SCTP) {
                  if (real_proto == IPPROTO_UDP)
                        bpf_error("port '%s' is udp", name);

                  else if (real_proto == IPPROTO_TCP)
                        bpf_error("port '%s' is tcp", name);
                  else
                        /* override PROTO_UNDEF */
                        real_proto = IPPROTO_SCTP;
            }
#ifndef INET6
            return gen_port(port, real_proto, dir);
#else
            b = gen_port(port, real_proto, dir);
            gen_or(gen_port6(port, real_proto, dir), b);
            return b;
#endif /* INET6 */

      case Q_PORTRANGE:
            if (proto != Q_DEFAULT &&
                proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
                  bpf_error("illegal qualifier of 'portrange'");
            if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0) 
                  bpf_error("unknown port in range '%s'", name);
            if (proto == Q_UDP) {
                  if (real_proto == IPPROTO_TCP)
                        bpf_error("port in range '%s' is tcp", name);
                  else if (real_proto == IPPROTO_SCTP)
                        bpf_error("port in range '%s' is sctp", name);
                  else
                        /* override PROTO_UNDEF */
                        real_proto = IPPROTO_UDP;
            }
            if (proto == Q_TCP) {
                  if (real_proto == IPPROTO_UDP)
                        bpf_error("port in range '%s' is udp", name);
                  else if (real_proto == IPPROTO_SCTP)
                        bpf_error("port in range '%s' is sctp", name);
                  else
                        /* override PROTO_UNDEF */
                        real_proto = IPPROTO_TCP;
            }
            if (proto == Q_SCTP) {
                  if (real_proto == IPPROTO_UDP)
                        bpf_error("port in range '%s' is udp", name);
                  else if (real_proto == IPPROTO_TCP)
                        bpf_error("port in range '%s' is tcp", name);
                  else
                        /* override PROTO_UNDEF */
                        real_proto = IPPROTO_SCTP;    
            }
#ifndef INET6
            return gen_portrange(port1, port2, real_proto, dir);
#else
            b = gen_portrange(port1, port2, real_proto, dir);
            gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
            return b;
#endif /* INET6 */

      case Q_GATEWAY:
#ifndef INET6
            eaddr = pcap_ether_hostton(name);
            if (eaddr == NULL)
                  bpf_error("unknown ether host: %s", name);

            alist = pcap_nametoaddr(name);
            if (alist == NULL || *alist == NULL)
                  bpf_error("unknown host '%s'", name);
            b = gen_gateway(eaddr, alist, proto, dir);
            free(eaddr);
            return b;
#else
            bpf_error("'gateway' not supported in this configuration");
#endif /*INET6*/

      case Q_PROTO:
            real_proto = lookup_proto(name, proto);
            if (real_proto >= 0)
                  return gen_proto(real_proto, proto, dir);
            else
                  bpf_error("unknown protocol: %s", name);

      case Q_PROTOCHAIN:
            real_proto = lookup_proto(name, proto);
            if (real_proto >= 0)
                  return gen_protochain(real_proto, proto, dir);
            else
                  bpf_error("unknown protocol: %s", name);

      case Q_UNDEF:
            syntax();
            /* NOTREACHED */
      }
      abort();
      /* NOTREACHED */
}

struct block *
gen_mcode(s1, s2, masklen, q)
      register const char *s1, *s2;
      register int masklen;
      struct qual q;
{
      register int nlen, mlen;
      bpf_u_int32 n, m;

      nlen = __pcap_atoin(s1, &n);
      /* Promote short ipaddr */
      n <<= 32 - nlen;

      if (s2 != NULL) {
            mlen = __pcap_atoin(s2, &m);
            /* Promote short ipaddr */
            m <<= 32 - mlen;
            if ((n & ~m) != 0)
                  bpf_error("non-network bits set in \"%s mask %s\"",
                      s1, s2);
      } else {
            /* Convert mask len to mask */
            if (masklen > 32)
                  bpf_error("mask length must be <= 32");
            if (masklen == 0) {
                  /*
                   * X << 32 is not guaranteed by C to be 0; it's
                   * undefined.
                   */
                  m = 0;
            } else
                  m = 0xffffffff << (32 - masklen);
            if ((n & ~m) != 0)
                  bpf_error("non-network bits set in \"%s/%d\"",
                      s1, masklen);
      }

      switch (q.addr) {

      case Q_NET:
            return gen_host(n, m, q.proto, q.dir, q.addr);

      default:
            bpf_error("Mask syntax for networks only");
            /* NOTREACHED */
      }
      /* NOTREACHED */
      return NULL;
}

struct block *
gen_ncode(s, v, q)
      register const char *s;
      bpf_u_int32 v;
      struct qual q;
{
      bpf_u_int32 mask;
      int proto = q.proto;
      int dir = q.dir;
      register int vlen;

      if (s == NULL)
            vlen = 32;
      else if (q.proto == Q_DECNET)
            vlen = __pcap_atodn(s, &v);
      else
            vlen = __pcap_atoin(s, &v);

      switch (q.addr) {

      case Q_DEFAULT:
      case Q_HOST:
      case Q_NET:
            if (proto == Q_DECNET)
                  return gen_host(v, 0, proto, dir, q.addr);
            else if (proto == Q_LINK) {
                  bpf_error("illegal link layer address");
            } else {
                  mask = 0xffffffff;
                  if (s == NULL && q.addr == Q_NET) {
                        /* Promote short net number */
                        while (v && (v & 0xff000000) == 0) {
                              v <<= 8;
                              mask <<= 8;
                        }
                  } else {
                        /* Promote short ipaddr */
                        v <<= 32 - vlen;
                        mask <<= 32 - vlen;
                  }
                  return gen_host(v, mask, proto, dir, q.addr);
            }

      case Q_PORT:
            if (proto == Q_UDP)
                  proto = IPPROTO_UDP;
            else if (proto == Q_TCP)
                  proto = IPPROTO_TCP;
            else if (proto == Q_SCTP)
                  proto = IPPROTO_SCTP;
            else if (proto == Q_DEFAULT)
                  proto = PROTO_UNDEF;
            else
                  bpf_error("illegal qualifier of 'port'");

#ifndef INET6
            return gen_port((int)v, proto, dir);
#else
          {
            struct block *b;
            b = gen_port((int)v, proto, dir);
            gen_or(gen_port6((int)v, proto, dir), b);
            return b;
          }
#endif /* INET6 */

      case Q_PORTRANGE:
            if (proto == Q_UDP)
                  proto = IPPROTO_UDP;
            else if (proto == Q_TCP)
                  proto = IPPROTO_TCP;
            else if (proto == Q_SCTP)
                  proto = IPPROTO_SCTP;
            else if (proto == Q_DEFAULT)
                  proto = PROTO_UNDEF;
            else
                  bpf_error("illegal qualifier of 'portrange'");

#ifndef INET6
            return gen_portrange((int)v, (int)v, proto, dir);
#else
          {
            struct block *b;
            b = gen_portrange((int)v, (int)v, proto, dir);
            gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
            return b;
          }
#endif /* INET6 */

      case Q_GATEWAY:
            bpf_error("'gateway' requires a name");
            /* NOTREACHED */

      case Q_PROTO:
            return gen_proto((int)v, proto, dir);

      case Q_PROTOCHAIN:
            return gen_protochain((int)v, proto, dir);

      case Q_UNDEF:
            syntax();
            /* NOTREACHED */

      default:
            abort();
            /* NOTREACHED */
      }
      /* NOTREACHED */
}

#ifdef INET6
struct block *
gen_mcode6(s1, s2, masklen, q)
      register const char *s1, *s2;
      register int masklen;
      struct qual q;
{
      struct addrinfo *res;
      struct in6_addr *addr;
      struct in6_addr mask;
      struct block *b;
      u_int32_t *a, *m;

      if (s2)
            bpf_error("no mask %s supported", s2);

      res = pcap_nametoaddrinfo(s1);
      if (!res)
            bpf_error("invalid ip6 address %s", s1);
      if (res->ai_next)
            bpf_error("%s resolved to multiple address", s1);
      addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;

      if (sizeof(mask) * 8 < masklen)
            bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
      memset(&mask, 0, sizeof(mask));
      memset(&mask, 0xff, masklen / 8);
      if (masklen % 8) {
            mask.s6_addr[masklen / 8] =
                  (0xff << (8 - masklen % 8)) & 0xff;
      }

      a = (u_int32_t *)addr;
      m = (u_int32_t *)&mask;
      if ((a[0] & ~m[0]) || (a[1] & ~m[1])
       || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
            bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
      }

      switch (q.addr) {

      case Q_DEFAULT:
      case Q_HOST:
            if (masklen != 128)
                  bpf_error("Mask syntax for networks only");
            /* FALLTHROUGH */

      case Q_NET:
            b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
            freeaddrinfo(res);
            return b;

      default:
            bpf_error("invalid qualifier against IPv6 address");
            /* NOTREACHED */
      }
      return NULL;
}
#endif /*INET6*/

struct block *
gen_ecode(eaddr, q)
      register const u_char *eaddr;
      struct qual q;
{
      struct block *b, *tmp;

      if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
            switch (linktype) {
            case DLT_EN10MB:
                  return gen_ehostop(eaddr, (int)q.dir);
            case DLT_FDDI:
                  return gen_fhostop(eaddr, (int)q.dir);
            case DLT_IEEE802:
                  return gen_thostop(eaddr, (int)q.dir);
            case DLT_IEEE802_11:
            case DLT_PRISM_HEADER:
            case DLT_IEEE802_11_RADIO_AVS:
            case DLT_IEEE802_11_RADIO:
            case DLT_PPI:
                  return gen_wlanhostop(eaddr, (int)q.dir);
            case DLT_SUNATM:
                  if (is_lane) {
                        /*
                         * Check that the packet doesn't begin with an
                         * LE Control marker.  (We've already generated
                         * a test for LANE.)
                         */
                        tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
                              0xFF00);
                        gen_not(tmp);

                        /*
                         * Now check the MAC address.
                         */
                        b = gen_ehostop(eaddr, (int)q.dir);
                        gen_and(tmp, b);
                        return b;
                  }
                  break;
            case DLT_IP_OVER_FC:
                  return gen_ipfchostop(eaddr, (int)q.dir);
            default:
                  bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
                  break;
            }
      }
      bpf_error("ethernet address used in non-ether expression");
      /* NOTREACHED */
      return NULL;
}

void
sappend(s0, s1)
      struct slist *s0, *s1;
{
      /*
       * This is definitely not the best way to do this, but the
       * lists will rarely get long.
       */
      while (s0->next)
            s0 = s0->next;
      s0->next = s1;
}

static struct slist *
xfer_to_x(a)
      struct arth *a;
{
      struct slist *s;

      s = new_stmt(BPF_LDX|BPF_MEM);
      s->s.k = a->regno;
      return s;
}

static struct slist *
xfer_to_a(a)
      struct arth *a;
{
      struct slist *s;

      s = new_stmt(BPF_LD|BPF_MEM);
      s->s.k = a->regno;
      return s;
}

/*
 * Modify "index" to use the value stored into its register as an
 * offset relative to the beginning of the header for the protocol
 * "proto", and allocate a register and put an item "size" bytes long
 * (1, 2, or 4) at that offset into that register, making it the register
 * for "index".
 */
struct arth *
gen_load(proto, inst, size)
      int proto;
      struct arth *inst;
      int size;
{
      struct slist *s, *tmp;
      struct block *b;
      int regno = alloc_reg();

      free_reg(inst->regno);
      switch (size) {

      default:
            bpf_error("data size must be 1, 2, or 4");

      case 1:
            size = BPF_B;
            break;

      case 2:
            size = BPF_H;
            break;

      case 4:
            size = BPF_W;
            break;
      }
      switch (proto) {
      default:
            bpf_error("unsupported index operation");

      case Q_RADIO:
            /*
             * The offset is relative to the beginning of the packet
             * data, if we have a radio header.  (If we don't, this
             * is an error.)
             */
            if (linktype != DLT_IEEE802_11_RADIO_AVS &&
                linktype != DLT_IEEE802_11_RADIO &&
                linktype != DLT_PRISM_HEADER)
                  bpf_error("radio information not present in capture");

            /*
             * Load into the X register the offset computed into the
             * register specifed by "index".
             */
            s = xfer_to_x(inst);

            /*
             * Load the item at that offset.
             */
            tmp = new_stmt(BPF_LD|BPF_IND|size);
            sappend(s, tmp);
            sappend(inst->s, s);
            break;

      case Q_LINK:
            /*
             * The offset is relative to the beginning of
             * the link-layer header.
             *
             * XXX - what about ATM LANE?  Should the index be
             * relative to the beginning of the AAL5 frame, so
             * that 0 refers to the beginning of the LE Control
             * field, or relative to the beginning of the LAN
             * frame, so that 0 refers, for Ethernet LANE, to
             * the beginning of the destination address?
             */
            s = gen_llprefixlen();

            /*
             * If "s" is non-null, it has code to arrange that the
             * X register contains the length of the prefix preceding
             * the link-layer header.  Add to it the offset computed
             * into the register specified by "index", and move that
             * into the X register.  Otherwise, just load into the X
             * register the offset computed into the register specifed
             * by "index".
             */
            if (s != NULL) {
                  sappend(s, xfer_to_a(inst));
                  sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
                  sappend(s, new_stmt(BPF_MISC|BPF_TAX));
            } else
                  s = xfer_to_x(inst);

            /*
             * Load the item at the sum of the offset we've put in the
             * X register and the offset of the start of the link
             * layer header (which is 0 if the radio header is
             * variable-length; that header length is what we put
             * into the X register and then added to the index).
             */
            tmp = new_stmt(BPF_LD|BPF_IND|size);
            tmp->s.k = off_ll;
            sappend(s, tmp);
            sappend(inst->s, s);
            break;

      case Q_IP:
      case Q_ARP:
      case Q_RARP:
      case Q_ATALK:
      case Q_DECNET:
      case Q_SCA:
      case Q_LAT:
      case Q_MOPRC:
      case Q_MOPDL:
#ifdef INET6
      case Q_IPV6:
#endif
            /*
             * The offset is relative to the beginning of
             * the network-layer header.
             * XXX - are there any cases where we want
             * off_nl_nosnap?
             */
            s = gen_off_macpl();

            /*
             * If "s" is non-null, it has code to arrange that the
             * X register contains the offset of the MAC-layer
             * payload.  Add to it the offset computed into the
             * register specified by "index", and move that into
             * the X register.  Otherwise, just load into the X
             * register the offset computed into the register specifed
             * by "index".
             */
            if (s != NULL) {
                  sappend(s, xfer_to_a(inst));
                  sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
                  sappend(s, new_stmt(BPF_MISC|BPF_TAX));
            } else
                  s = xfer_to_x(inst);

            /*
             * Load the item at the sum of the offset we've put in the
             * X register, the offset of the start of the network
             * layer header from the beginning of the MAC-layer
             * payload, and the purported offset of the start of the
             * MAC-layer payload (which might be 0 if there's a
             * variable-length prefix before the link-layer header
             * or the link-layer header itself is variable-length;
             * the variable-length offset of the start of the
             * MAC-layer payload is what we put into the X register
             * and then added to the index).
             */
            tmp = new_stmt(BPF_LD|BPF_IND|size);
            tmp->s.k = off_macpl + off_nl;
            sappend(s, tmp);
            sappend(inst->s, s);

            /*
             * Do the computation only if the packet contains
             * the protocol in question.
             */
            b = gen_proto_abbrev(proto);
            if (inst->b)
                  gen_and(inst->b, b);
            inst->b = b;
            break;

      case Q_SCTP:
      case Q_TCP:
      case Q_UDP:
      case Q_ICMP:
      case Q_IGMP:
      case Q_IGRP:
      case Q_PIM:
      case Q_VRRP:
            /*
             * The offset is relative to the beginning of
             * the transport-layer header.
             *
             * Load the X register with the length of the IPv4 header
             * (plus the offset of the link-layer header, if it's
             * a variable-length header), in bytes.
             *
             * XXX - are there any cases where we want
             * off_nl_nosnap?
             * XXX - we should, if we're built with
             * IPv6 support, generate code to load either
             * IPv4, IPv6, or both, as appropriate.
             */
            s = gen_loadx_iphdrlen();

            /*
             * The X register now contains the sum of the length
             * of any variable-length header preceding the link-layer
             * header, any variable-length link-layer header, and the
             * length of the network-layer header.
             *
             * Load into the A register the offset relative to
             * the beginning of the transport layer header,
             * add the X register to that, move that to the
             * X register, and load with an offset from the
             * X register equal to the offset of the network
             * layer header relative to the beginning of
             * the MAC-layer payload plus the fixed-length
             * portion of the offset of the MAC-layer payload
             * from the beginning of the raw packet data.
             */
            sappend(s, xfer_to_a(inst));
            sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
            sappend(s, new_stmt(BPF_MISC|BPF_TAX));
            sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
            tmp->s.k = off_macpl + off_nl;
            sappend(inst->s, s);

            /*
             * Do the computation only if the packet contains
             * the protocol in question - which is true only
             * if this is an IP datagram and is the first or
             * only fragment of that datagram.
             */
            gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
            if (inst->b)
                  gen_and(inst->b, b);
#ifdef INET6
            gen_and(gen_proto_abbrev(Q_IP), b);
#endif
            inst->b = b;
            break;
#ifdef INET6
      case Q_ICMPV6:
            bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
            /*NOTREACHED*/
#endif
      }
      inst->regno = regno;
      s = new_stmt(BPF_ST);
      s->s.k = regno;
      sappend(inst->s, s);

      return inst;
}

struct block *
gen_relation(code, a0, a1, reversed)
      int code;
      struct arth *a0, *a1;
      int reversed;
{
      struct slist *s0, *s1, *s2;
      struct block *b, *tmp;

      s0 = xfer_to_x(a1);
      s1 = xfer_to_a(a0);
      if (code == BPF_JEQ) {
            s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
            b = new_block(JMP(code));
            sappend(s1, s2);
      }
      else
            b = new_block(BPF_JMP|code|BPF_X);
      if (reversed)
            gen_not(b);

      sappend(s0, s1);
      sappend(a1->s, s0);
      sappend(a0->s, a1->s);

      b->stmts = a0->s;

      free_reg(a0->regno);
      free_reg(a1->regno);

      /* 'and' together protocol checks */
      if (a0->b) {
            if (a1->b) {
                  gen_and(a0->b, tmp = a1->b);
            }
            else
                  tmp = a0->b;
      } else
            tmp = a1->b;

      if (tmp)
            gen_and(tmp, b);

      return b;
}

struct arth *
gen_loadlen()
{
      int regno = alloc_reg();
      struct arth *a = (struct arth *)newchunk(sizeof(*a));
      struct slist *s;

      s = new_stmt(BPF_LD|BPF_LEN);
      s->next = new_stmt(BPF_ST);
      s->next->s.k = regno;
      a->s = s;
      a->regno = regno;

      return a;
}

struct arth *
gen_loadi(val)
      int val;
{
      struct arth *a;
      struct slist *s;
      int reg;

      a = (struct arth *)newchunk(sizeof(*a));

      reg = alloc_reg();

      s = new_stmt(BPF_LD|BPF_IMM);
      s->s.k = val;
      s->next = new_stmt(BPF_ST);
      s->next->s.k = reg;
      a->s = s;
      a->regno = reg;

      return a;
}

struct arth *
gen_neg(a)
      struct arth *a;
{
      struct slist *s;

      s = xfer_to_a(a);
      sappend(a->s, s);
      s = new_stmt(BPF_ALU|BPF_NEG);
      s->s.k = 0;
      sappend(a->s, s);
      s = new_stmt(BPF_ST);
      s->s.k = a->regno;
      sappend(a->s, s);

      return a;
}

struct arth *
gen_arth(code, a0, a1)
      int code;
      struct arth *a0, *a1;
{
      struct slist *s0, *s1, *s2;

      s0 = xfer_to_x(a1);
      s1 = xfer_to_a(a0);
      s2 = new_stmt(BPF_ALU|BPF_X|code);

      sappend(s1, s2);
      sappend(s0, s1);
      sappend(a1->s, s0);
      sappend(a0->s, a1->s);

      free_reg(a0->regno);
      free_reg(a1->regno);

      s0 = new_stmt(BPF_ST);
      a0->regno = s0->s.k = alloc_reg();
      sappend(a0->s, s0);

      return a0;
}

/*
 * Here we handle simple allocation of the scratch registers.
 * If too many registers are alloc'd, the allocator punts.
 */
static int regused[BPF_MEMWORDS];
static int curreg;

/*
 * Initialize the table of used registers and the current register.
 */
static void
init_regs()
{
      curreg = 0;
      memset(regused, 0, sizeof regused);
}

/*
 * Return the next free register.
 */
static int
alloc_reg()
{
      int n = BPF_MEMWORDS;

      while (--n >= 0) {
            if (regused[curreg])
                  curreg = (curreg + 1) % BPF_MEMWORDS;
            else {
                  regused[curreg] = 1;
                  return curreg;
            }
      }
      bpf_error("too many registers needed to evaluate expression");
      /* NOTREACHED */
      return 0;
}

/*
 * Return a register to the table so it can
 * be used later.
 */
static void
free_reg(n)
      int n;
{
      regused[n] = 0;
}

static struct block *
gen_len(jmp, n)
      int jmp, n;
{
      struct slist *s;
      struct block *b;

      s = new_stmt(BPF_LD|BPF_LEN);
      b = new_block(JMP(jmp));
      b->stmts = s;
      b->s.k = n;

      return b;
}

struct block *
gen_greater(n)
      int n;
{
      return gen_len(BPF_JGE, n);
}

/*
 * Actually, this is less than or equal.
 */
struct block *
gen_less(n)
      int n;
{
      struct block *b;

      b = gen_len(BPF_JGT, n);
      gen_not(b);

      return b;
}

/*
 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
 * the beginning of the link-layer header.
 * XXX - that means you can't test values in the radiotap header, but
 * as that header is difficult if not impossible to parse generally
 * without a loop, that might not be a severe problem.  A new keyword
 * "radio" could be added for that, although what you'd really want
 * would be a way of testing particular radio header values, which
 * would generate code appropriate to the radio header in question.
 */
struct block *
gen_byteop(op, idx, val)
      int op, idx, val;
{
      struct block *b;
      struct slist *s;

      switch (op) {
      default:
            abort();

      case '=':
            return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);

      case '<':
            b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
            return b;

      case '>':
            b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
            return b;

      case '|':
            s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
            break;

      case '&':
            s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
            break;
      }
      s->s.k = val;
      b = new_block(JMP(BPF_JEQ));
      b->stmts = s;
      gen_not(b);

      return b;
}

static u_char abroadcast[] = { 0x0 };

struct block *
gen_broadcast(proto)
      int proto;
{
      bpf_u_int32 hostmask;
      struct block *b0, *b1, *b2;
      static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };

      switch (proto) {

      case Q_DEFAULT:
      case Q_LINK:
            switch (linktype) {
            case DLT_ARCNET:
            case DLT_ARCNET_LINUX:
                  return gen_ahostop(abroadcast, Q_DST);
            case DLT_EN10MB:
                  return gen_ehostop(ebroadcast, Q_DST);
            case DLT_FDDI:
                  return gen_fhostop(ebroadcast, Q_DST);
            case DLT_IEEE802:
                  return gen_thostop(ebroadcast, Q_DST);
            case DLT_IEEE802_11:
            case DLT_PRISM_HEADER:
            case DLT_IEEE802_11_RADIO_AVS:
            case DLT_IEEE802_11_RADIO:
            case DLT_PPI:
                  return gen_wlanhostop(ebroadcast, Q_DST);
            case DLT_IP_OVER_FC:
                  return gen_ipfchostop(ebroadcast, Q_DST);
            case DLT_SUNATM:
                  if (is_lane) {
                        /*
                         * Check that the packet doesn't begin with an
                         * LE Control marker.  (We've already generated
                         * a test for LANE.)
                         */
                        b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
                            BPF_H, 0xFF00);
                        gen_not(b1);

                        /*
                         * Now check the MAC address.
                         */
                        b0 = gen_ehostop(ebroadcast, Q_DST);
                        gen_and(b1, b0);
                        return b0;
                  }
                  break;
            default:
                  bpf_error("not a broadcast link");
            }
            break;

      case Q_IP:
            b0 = gen_linktype(ETHERTYPE_IP);
            hostmask = ~netmask;
            b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
            b2 = gen_mcmp(OR_NET, 16, BPF_W,
                        (bpf_int32)(~0 & hostmask), hostmask);
            gen_or(b1, b2);
            gen_and(b0, b2);
            return b2;
      }
      bpf_error("only link-layer/IP broadcast filters supported");
      /* NOTREACHED */
      return NULL;
}

/*
 * Generate code to test the low-order bit of a MAC address (that's
 * the bottom bit of the *first* byte).
 */
static struct block *
gen_mac_multicast(offset)
      int offset;
{
      register struct block *b0;
      register struct slist *s;

      /* link[offset] & 1 != 0 */
      s = gen_load_a(OR_LINK, offset, BPF_B);
      b0 = new_block(JMP(BPF_JSET));
      b0->s.k = 1;
      b0->stmts = s;
      return b0;
}

struct block *
gen_multicast(proto)
      int proto;
{
      register struct block *b0, *b1, *b2;
      register struct slist *s;

      switch (proto) {

      case Q_DEFAULT:
      case Q_LINK:
            switch (linktype) {
            case DLT_ARCNET:
            case DLT_ARCNET_LINUX:
                  /* all ARCnet multicasts use the same address */
                  return gen_ahostop(abroadcast, Q_DST);
            case DLT_EN10MB:
                  /* ether[0] & 1 != 0 */
                  return gen_mac_multicast(0);
            case DLT_FDDI:
                  /*
                   * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
                   *
                   * XXX - was that referring to bit-order issues?
                   */
                  /* fddi[1] & 1 != 0 */
                  return gen_mac_multicast(1);
            case DLT_IEEE802:
                  /* tr[2] & 1 != 0 */
                  return gen_mac_multicast(2);
            case DLT_IEEE802_11:
            case DLT_PRISM_HEADER:
            case DLT_IEEE802_11_RADIO_AVS:
            case DLT_IEEE802_11_RADIO:
            case DLT_PPI:
                  /*
                   * Oh, yuk.
                   *
                   *    For control frames, there is no DA.
                   *
                   *    For management frames, DA is at an
                   *    offset of 4 from the beginning of
                   *    the packet.
                   *
                   *    For data frames, DA is at an offset
                   *    of 4 from the beginning of the packet
                   *    if To DS is clear and at an offset of
                   *    16 from the beginning of the packet
                   *    if To DS is set.
                   */

                  /*
                   * Generate the tests to be done for data frames.
                   *
                   * First, check for To DS set, i.e. "link[1] & 0x01".
                   */
                  s = gen_load_a(OR_LINK, 1, BPF_B);
                  b1 = new_block(JMP(BPF_JSET));
                  b1->s.k = 0x01;   /* To DS */
                  b1->stmts = s;

                  /*
                   * If To DS is set, the DA is at 16.
                   */
                  b0 = gen_mac_multicast(16);
                  gen_and(b1, b0);

                  /*
                   * Now, check for To DS not set, i.e. check
                   * "!(link[1] & 0x01)".
                   */
                  s = gen_load_a(OR_LINK, 1, BPF_B);
                  b2 = new_block(JMP(BPF_JSET));
                  b2->s.k = 0x01;   /* To DS */
                  b2->stmts = s;
                  gen_not(b2);

                  /*
                   * If To DS is not set, the DA is at 4.
                   */
                  b1 = gen_mac_multicast(4);
                  gen_and(b2, b1);

                  /*
                   * Now OR together the last two checks.  That gives
                   * the complete set of checks for data frames.
                   */
                  gen_or(b1, b0);

                  /*
                   * Now check for a data frame.
                   * I.e, check "link[0] & 0x08".
                   */
                  s = gen_load_a(OR_LINK, 0, BPF_B);
                  b1 = new_block(JMP(BPF_JSET));
                  b1->s.k = 0x08;
                  b1->stmts = s;

                  /*
                   * AND that with the checks done for data frames.
                   */
                  gen_and(b1, b0);

                  /*
                   * If the high-order bit of the type value is 0, this
                   * is a management frame.
                   * I.e, check "!(link[0] & 0x08)".
                   */
                  s = gen_load_a(OR_LINK, 0, BPF_B);
                  b2 = new_block(JMP(BPF_JSET));
                  b2->s.k = 0x08;
                  b2->stmts = s;
                  gen_not(b2);

                  /*
                   * For management frames, the DA is at 4.
                   */
                  b1 = gen_mac_multicast(4);
                  gen_and(b2, b1);

                  /*
                   * OR that with the checks done for data frames.
                   * That gives the checks done for management and
                   * data frames.
                   */
                  gen_or(b1, b0);

                  /*
                   * If the low-order bit of the type value is 1,
                   * this is either a control frame or a frame
                   * with a reserved type, and thus not a
                   * frame with an SA.
                   *
                   * I.e., check "!(link[0] & 0x04)".
                   */
                  s = gen_load_a(OR_LINK, 0, BPF_B);
                  b1 = new_block(JMP(BPF_JSET));
                  b1->s.k = 0x04;
                  b1->stmts = s;
                  gen_not(b1);

                  /*
                   * AND that with the checks for data and management
                   * frames.
                   */
                  gen_and(b1, b0);
                  return b0;
            case DLT_IP_OVER_FC:
                  b0 = gen_mac_multicast(2);
                  return b0;
            case DLT_SUNATM:
                  if (is_lane) {
                        /*
                         * Check that the packet doesn't begin with an
                         * LE Control marker.  (We've already generated
                         * a test for LANE.)
                         */
                        b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
                            BPF_H, 0xFF00);
                        gen_not(b1);

                        /* ether[off_mac] & 1 != 0 */
                        b0 = gen_mac_multicast(off_mac);
                        gen_and(b1, b0);
                        return b0;
                  }
                  break;
            default:
                  break;
            }
            /* Link not known to support multicasts */
            break;

      case Q_IP:
            b0 = gen_linktype(ETHERTYPE_IP);
            b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
            gen_and(b0, b1);
            return b1;

#ifdef INET6
      case Q_IPV6:
            b0 = gen_linktype(ETHERTYPE_IPV6);
            b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
            gen_and(b0, b1);
            return b1;
#endif /* INET6 */
      }
      bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
      /* NOTREACHED */
      return NULL;
}

/*
 * generate command for inbound/outbound.  It's here so we can
 * make it link-type specific.  'dir' = 0 implies "inbound",
 * = 1 implies "outbound".
 */
struct block *
gen_inbound(dir)
      int dir;
{
      register struct block *b0;

      /*
       * Only some data link types support inbound/outbound qualifiers.
       */
      switch (linktype) {
      case DLT_SLIP:
            b0 = gen_relation(BPF_JEQ,
                    gen_load(Q_LINK, gen_loadi(0), 1),
                    gen_loadi(0),
                    dir);
            break;

      case DLT_LINUX_SLL:
            if (dir) {
                  /*
                   * Match packets sent by this machine.
                   */
                  b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
            } else {
                  /*
                   * Match packets sent to this machine.
                   * (No broadcast or multicast packets, or
                   * packets sent to some other machine and
                   * received promiscuously.)
                   *
                   * XXX - packets sent to other machines probably
                   * shouldn't be matched, but what about broadcast
                   * or multicast packets we received?
                   */
                  b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_HOST);
            }
            break;

#ifdef HAVE_NET_PFVAR_H
      case DLT_PFLOG:
            b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
                (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
            break;
#endif

      case DLT_PPP_PPPD:
            if (dir) {
                  /* match outgoing packets */
                  b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
            } else {
                  /* match incoming packets */
                  b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
            }
            break;

        case DLT_JUNIPER_MFR:
        case DLT_JUNIPER_MLFR:
        case DLT_JUNIPER_MLPPP:
      case DLT_JUNIPER_ATM1:
      case DLT_JUNIPER_ATM2:
      case DLT_JUNIPER_PPPOE:
      case DLT_JUNIPER_PPPOE_ATM:
        case DLT_JUNIPER_GGSN:
        case DLT_JUNIPER_ES:
        case DLT_JUNIPER_MONITOR:
        case DLT_JUNIPER_SERVICES:
        case DLT_JUNIPER_ETHER:
        case DLT_JUNIPER_PPP:
        case DLT_JUNIPER_FRELAY:
        case DLT_JUNIPER_CHDLC:
        case DLT_JUNIPER_VP:
        case DLT_JUNIPER_ST:
        case DLT_JUNIPER_ISM:
            /* juniper flags (including direction) are stored
             * the byte after the 3-byte magic number */
            if (dir) {
                  /* match outgoing packets */
                  b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
            } else {
                  /* match incoming packets */
                  b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
            }
            break;

      default:
            bpf_error("inbound/outbound not supported on linktype %d",
                linktype);
            b0 = NULL;
            /* NOTREACHED */
      }
      return (b0);
}

#ifdef HAVE_NET_PFVAR_H
/* PF firewall log matched interface */
struct block *
gen_pf_ifname(const char *ifname)
{
      struct block *b0;
      u_int len, off;

      if (linktype != DLT_PFLOG) {
            bpf_error("ifname supported only on PF linktype");
            /* NOTREACHED */
      }
      len = sizeof(((struct pfloghdr *)0)->ifname);
      off = offsetof(struct pfloghdr, ifname);
      if (strlen(ifname) >= len) {
            bpf_error("ifname interface names can only be %d characters",
                len-1);
            /* NOTREACHED */
      }
      b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
      return (b0);
}

/* PF firewall log ruleset name */
struct block *
gen_pf_ruleset(char *ruleset)
{
      struct block *b0;

      if (linktype != DLT_PFLOG) {
            bpf_error("ruleset supported only on PF linktype");
            /* NOTREACHED */
      }

      if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
            bpf_error("ruleset names can only be %ld characters",
                (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
            /* NOTREACHED */
      }

      b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
          strlen(ruleset), (const u_char *)ruleset);
      return (b0);
}

/* PF firewall log rule number */
struct block *
gen_pf_rnr(int rnr)
{
      struct block *b0;

      if (linktype != DLT_PFLOG) {
            bpf_error("rnr supported only on PF linktype");
            /* NOTREACHED */
      }

      b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
             (bpf_int32)rnr);
      return (b0);
}

/* PF firewall log sub-rule number */
struct block *
gen_pf_srnr(int srnr)
{
      struct block *b0;

      if (linktype != DLT_PFLOG) {
            bpf_error("srnr supported only on PF linktype");
            /* NOTREACHED */
      }

      b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
          (bpf_int32)srnr);
      return (b0);
}

/* PF firewall log reason code */
struct block *
gen_pf_reason(int reason)
{
      struct block *b0;

      if (linktype != DLT_PFLOG) {
            bpf_error("reason supported only on PF linktype");
            /* NOTREACHED */
      }

      b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
          (bpf_int32)reason);
      return (b0);
}

/* PF firewall log action */
struct block *
gen_pf_action(int action)
{
      struct block *b0;

      if (linktype != DLT_PFLOG) {
            bpf_error("action supported only on PF linktype");
            /* NOTREACHED */
      }

      b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
          (bpf_int32)action);
      return (b0);
}
#else /* !HAVE_NET_PFVAR_H */
struct block *
gen_pf_ifname(const char *ifname)
{
      bpf_error("libpcap was compiled without pf support");
      /* NOTREACHED */
      return (NULL);
}

struct block *
gen_pf_ruleset(char *ruleset)
{
      bpf_error("libpcap was compiled on a machine without pf support");
      /* NOTREACHED */
      return (NULL);
}

struct block *
gen_pf_rnr(int rnr)
{
      bpf_error("libpcap was compiled on a machine without pf support");
      /* NOTREACHED */
      return (NULL);
}

struct block *
gen_pf_srnr(int srnr)
{
      bpf_error("libpcap was compiled on a machine without pf support");
      /* NOTREACHED */
      return (NULL);
}

struct block *
gen_pf_reason(int reason)
{
      bpf_error("libpcap was compiled on a machine without pf support");
      /* NOTREACHED */
      return (NULL);
}

struct block *
gen_pf_action(int action)
{
      bpf_error("libpcap was compiled on a machine without pf support");
      /* NOTREACHED */
      return (NULL);
}
#endif /* HAVE_NET_PFVAR_H */

/* IEEE 802.11 wireless header */
struct block *
gen_p80211_type(int type, int mask)
{
      struct block *b0;

      switch (linktype) {

      case DLT_IEEE802_11:
      case DLT_PRISM_HEADER:
      case DLT_IEEE802_11_RADIO_AVS:
      case DLT_IEEE802_11_RADIO:
            b0 = gen_mcmp(OR_LINK, 0, BPF_B, (bpf_int32)type,
                (bpf_int32)mask);
            break;

      default:
            bpf_error("802.11 link-layer types supported only on 802.11");
            /* NOTREACHED */
      }

      return (b0);
}

struct block *
gen_p80211_fcdir(int fcdir)
{
      struct block *b0;

      switch (linktype) {

      case DLT_IEEE802_11:
      case DLT_PRISM_HEADER:
      case DLT_IEEE802_11_RADIO_AVS:
      case DLT_IEEE802_11_RADIO:
            break;

      default:
            bpf_error("frame direction supported only with 802.11 headers");
            /* NOTREACHED */
      }

      b0 = gen_mcmp(OR_LINK, 1, BPF_B, (bpf_int32)fcdir,
            (bpf_u_int32)IEEE80211_FC1_DIR_MASK);

      return (b0);
}

struct block *
gen_acode(eaddr, q)
      register const u_char *eaddr;
      struct qual q;
{
      switch (linktype) {

      case DLT_ARCNET:
      case DLT_ARCNET_LINUX:
            if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
                q.proto == Q_LINK)
                  return (gen_ahostop(eaddr, (int)q.dir));
            else {
                  bpf_error("ARCnet address used in non-arc expression");
                  /* NOTREACHED */
            }
            break;

      default:
            bpf_error("aid supported only on ARCnet");
            /* NOTREACHED */
      }
      bpf_error("ARCnet address used in non-arc expression");
      /* NOTREACHED */
      return NULL;
}

static struct block *
gen_ahostop(eaddr, dir)
      register const u_char *eaddr;
      register int dir;
{
      register struct block *b0, *b1;

      switch (dir) {
      /* src comes first, different from Ethernet */
      case Q_SRC:
            return gen_bcmp(OR_LINK, 0, 1, eaddr);

      case Q_DST:
            return gen_bcmp(OR_LINK, 1, 1, eaddr);

      case Q_AND:
            b0 = gen_ahostop(eaddr, Q_SRC);
            b1 = gen_ahostop(eaddr, Q_DST);
            gen_and(b0, b1);
            return b1;

      case Q_DEFAULT:
      case Q_OR:
            b0 = gen_ahostop(eaddr, Q_SRC);
            b1 = gen_ahostop(eaddr, Q_DST);
            gen_or(b0, b1);
            return b1;
      }
      abort();
      /* NOTREACHED */
}

/*
 * support IEEE 802.1Q VLAN trunk over ethernet
 */
struct block *
gen_vlan(vlan_num)
      int vlan_num;
{
      struct      block *b0, *b1;

      /* can't check for VLAN-encapsulated packets inside MPLS */
      if (label_stack_depth > 0)
            bpf_error("no VLAN match after MPLS");

      /*
       * Check for a VLAN packet, and then change the offsets to point
       * to the type and data fields within the VLAN packet.  Just
       * increment the offsets, so that we can support a hierarchy, e.g.
       * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
       * VLAN 100.
       *
       * XXX - this is a bit of a kludge.  If we were to split the
       * compiler into a parser that parses an expression and
       * generates an expression tree, and a code generator that
       * takes an expression tree (which could come from our
       * parser or from some other parser) and generates BPF code,
       * we could perhaps make the offsets parameters of routines
       * and, in the handler for an "AND" node, pass to subnodes
       * other than the VLAN node the adjusted offsets.
       *
       * This would mean that "vlan" would, instead of changing the
       * behavior of *all* tests after it, change only the behavior
       * of tests ANDed with it.  That would change the documented
       * semantics of "vlan", which might break some expressions.
       * However, it would mean that "(vlan and ip) or ip" would check
       * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
       * checking only for VLAN-encapsulated IP, so that could still
       * be considered worth doing; it wouldn't break expressions
       * that are of the form "vlan and ..." or "vlan N and ...",
       * which I suspect are the most common expressions involving
       * "vlan".  "vlan or ..." doesn't necessarily do what the user
       * would really want, now, as all the "or ..." tests would
       * be done assuming a VLAN, even though the "or" could be viewed
       * as meaning "or, if this isn't a VLAN packet...".
       */
      orig_nl = off_nl;

      switch (linktype) {

      case DLT_EN10MB:
            /* check for VLAN */
            b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
                (bpf_int32)ETHERTYPE_8021Q);

            /* If a specific VLAN is requested, check VLAN id */
            if (vlan_num >= 0) {
                  b1 = gen_mcmp(OR_MACPL, 0, BPF_H,
                      (bpf_int32)vlan_num, 0x0fff);
                  gen_and(b0, b1);
                  b0 = b1;
            }

            off_macpl += 4;
            off_linktype += 4;
#if 0
            off_nl_nosnap += 4;
            off_nl += 4;
#endif
            break;

      default:
            bpf_error("no VLAN support for data link type %d",
                  linktype);
            /*NOTREACHED*/
      }

      return (b0);
}

/*
 * support for MPLS
 */
struct block *
gen_mpls(label_num)
      int label_num;
{
      struct      block *b0,*b1;

      /*
       * Change the offsets to point to the type and data fields within
       * the MPLS packet.  Just increment the offsets, so that we
       * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
       * capture packets with an outer label of 100000 and an inner
       * label of 1024.
       *
       * XXX - this is a bit of a kludge.  See comments in gen_vlan().
       */
        orig_nl = off_nl;

        if (label_stack_depth > 0) {
            /* just match the bottom-of-stack bit clear */
            b0 = gen_mcmp(OR_MACPL, orig_nl-2, BPF_B, 0, 0x01);
        } else {
            /*
             * Indicate that we're checking MPLS-encapsulated headers,
             * to make sure higher level code generators don't try to
             * match against IP-related protocols such as Q_ARP, Q_RARP
             * etc.
             */
            switch (linktype) {
                
            case DLT_C_HDLC: /* fall through */
            case DLT_EN10MB:
                    b0 = gen_linktype(ETHERTYPE_MPLS);
                    break;
                
            case DLT_PPP:
                    b0 = gen_linktype(PPP_MPLS_UCAST);
                    break;
                
                    /* FIXME add other DLT_s ...
                     * for Frame-Relay/and ATM this may get messy due to SNAP headers
                     * leave it for now */
                
            default:
                    bpf_error("no MPLS support for data link type %d",
                          linktype);
                    b0 = NULL;
                    /*NOTREACHED*/
                    break;
            }
        }

      /* If a specific MPLS label is requested, check it */
      if (label_num >= 0) {
            label_num = label_num << 12; /* label is shifted 12 bits on the wire */
            b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W, (bpf_int32)label_num,
                0xfffff000); /* only compare the first 20 bits */
            gen_and(b0, b1);
            b0 = b1;
      }

        off_nl_nosnap += 4;
        off_nl += 4;
        label_stack_depth++;
      return (b0);
}

/*
 * Support PPPOE discovery and session.
 */
struct block *
gen_pppoed()
{
      /* check for PPPoE discovery */
      return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
}

struct block *
gen_pppoes()
{
      struct block *b0;

      /*
       * Test against the PPPoE session link-layer type.
       */
      b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);

      /*
       * Change the offsets to point to the type and data fields within
       * the PPP packet, and note that this is PPPoE rather than
       * raw PPP.
       *
       * XXX - this is a bit of a kludge.  If we were to split the
       * compiler into a parser that parses an expression and
       * generates an expression tree, and a code generator that
       * takes an expression tree (which could come from our
       * parser or from some other parser) and generates BPF code,
       * we could perhaps make the offsets parameters of routines
       * and, in the handler for an "AND" node, pass to subnodes
       * other than the PPPoE node the adjusted offsets.
       *
       * This would mean that "pppoes" would, instead of changing the
       * behavior of *all* tests after it, change only the behavior
       * of tests ANDed with it.  That would change the documented
       * semantics of "pppoes", which might break some expressions.
       * However, it would mean that "(pppoes and ip) or ip" would check
       * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
       * checking only for VLAN-encapsulated IP, so that could still
       * be considered worth doing; it wouldn't break expressions
       * that are of the form "pppoes and ..." which I suspect are the
       * most common expressions involving "pppoes".  "pppoes or ..."
       * doesn't necessarily do what the user would really want, now,
       * as all the "or ..." tests would be done assuming PPPoE, even
       * though the "or" could be viewed as meaning "or, if this isn't
       * a PPPoE packet...".
       */
      orig_linktype = off_linktype; /* save original values */
      orig_nl = off_nl;
      is_pppoes = 1;

      /*
       * The "network-layer" protocol is PPPoE, which has a 6-byte
       * PPPoE header, followed by a PPP packet.
       *
       * There is no HDLC encapsulation for the PPP packet (it's
       * encapsulated in PPPoES instead), so the link-layer type
       * starts at the first byte of the PPP packet.  For PPPoE,
       * that offset is relative to the beginning of the total
       * link-layer payload, including any 802.2 LLC header, so
       * it's 6 bytes past off_nl.
       */
      off_linktype = off_nl + 6;

      /*
       * The network-layer offsets are relative to the beginning
       * of the MAC-layer payload; that's past the 6-byte
       * PPPoE header and the 2-byte PPP header.
       */
      off_nl = 6+2;
      off_nl_nosnap = 6+2;

      return b0;
}

struct block *
gen_atmfield_code(atmfield, jvalue, jtype, reverse)
      int atmfield;
      bpf_int32 jvalue;
      bpf_u_int32 jtype;
      int reverse;
{
      struct block *b0;

      switch (atmfield) {

      case A_VPI:
            if (!is_atm)
                  bpf_error("'vpi' supported only on raw ATM");
            if (off_vpi == (u_int)-1)
                  abort();
            b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
                reverse, jvalue);
            break;

      case A_VCI:
            if (!is_atm)
                  bpf_error("'vci' supported only on raw ATM");
            if (off_vci == (u_int)-1)
                  abort();
            b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
                reverse, jvalue);
            break;

      case A_PROTOTYPE:
            if (off_proto == (u_int)-1)
                  abort();    /* XXX - this isn't on FreeBSD */
            b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
                reverse, jvalue);
            break;

      case A_MSGTYPE:
            if (off_payload == (u_int)-1)
                  abort();
            b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
                0xffffffff, jtype, reverse, jvalue);
            break;

      case A_CALLREFTYPE:
            if (!is_atm)
                  bpf_error("'callref' supported only on raw ATM");
            if (off_proto == (u_int)-1)
                  abort();
            b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
                jtype, reverse, jvalue);
            break;

      default:
            abort();
      }
      return b0;
}

struct block *
gen_atmtype_abbrev(type)
      int type;
{
      struct block *b0, *b1;

      switch (type) {

      case A_METAC:
            /* Get all packets in Meta signalling Circuit */
            if (!is_atm)
                  bpf_error("'metac' supported only on raw ATM");
            b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
            b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
            gen_and(b0, b1);
            break;

      case A_BCC:
            /* Get all packets in Broadcast Circuit*/
            if (!is_atm)
                  bpf_error("'bcc' supported only on raw ATM");
            b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
            b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
            gen_and(b0, b1);
            break;

      case A_OAMF4SC:
            /* Get all cells in Segment OAM F4 circuit*/
            if (!is_atm)
                  bpf_error("'oam4sc' supported only on raw ATM");
            b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
            b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
            gen_and(b0, b1);
            break;

      case A_OAMF4EC:
            /* Get all cells in End-to-End OAM F4 Circuit*/
            if (!is_atm)
                  bpf_error("'oam4ec' supported only on raw ATM");
            b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
            b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
            gen_and(b0, b1);
            break;

      case A_SC:
            /*  Get all packets in connection Signalling Circuit */
            if (!is_atm)
                  bpf_error("'sc' supported only on raw ATM");
            b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
            b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
            gen_and(b0, b1);
            break;

      case A_ILMIC:
            /* Get all packets in ILMI Circuit */
            if (!is_atm)
                  bpf_error("'ilmic' supported only on raw ATM");
            b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
            b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
            gen_and(b0, b1);
            break;

      case A_LANE:
            /* Get all LANE packets */
            if (!is_atm)
                  bpf_error("'lane' supported only on raw ATM");
            b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);

            /*
             * Arrange that all subsequent tests assume LANE
             * rather than LLC-encapsulated packets, and set
             * the offsets appropriately for LANE-encapsulated
             * Ethernet.
             *
             * "off_mac" is the offset of the Ethernet header,
             * which is 2 bytes past the ATM pseudo-header
             * (skipping the pseudo-header and 2-byte LE Client
             * field).  The other offsets are Ethernet offsets
             * relative to "off_mac".
             */
            is_lane = 1;
            off_mac = off_payload + 2;    /* MAC header */
            off_linktype = off_mac + 12;
            off_macpl = off_mac + 14;     /* Ethernet */
            off_nl = 0;             /* Ethernet II */
            off_nl_nosnap = 3;            /* 802.3+802.2 */
            break;

      case A_LLC:
            /* Get all LLC-encapsulated packets */
            if (!is_atm)
                  bpf_error("'llc' supported only on raw ATM");
            b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
            is_lane = 0;
            break;

      default:
            abort();
      }
      return b1;
}

/* 
 * Filtering for MTP2 messages based on li value
 * FISU, length is null
 * LSSU, length is 1 or 2
 * MSU, length is 3 or more
 */
struct block *
gen_mtp2type_abbrev(type)
      int type;
{
      struct block *b0, *b1;

      switch (type) {

      case M_FISU:
            if ( (linktype != DLT_MTP2) &&
                 (linktype != DLT_ERF) &&
                 (linktype != DLT_MTP2_WITH_PHDR) )
                  bpf_error("'fisu' supported only on MTP2");
            /* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
            b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
            break;

      case M_LSSU:
            if ( (linktype != DLT_MTP2) &&
                 (linktype != DLT_ERF) &&
                 (linktype != DLT_MTP2_WITH_PHDR) )
                  bpf_error("'lssu' supported only on MTP2");
            b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
            b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
            gen_and(b1, b0);
            break;

      case M_MSU:
            if ( (linktype != DLT_MTP2) &&
                 (linktype != DLT_ERF) &&
                 (linktype != DLT_MTP2_WITH_PHDR) )
                  bpf_error("'msu' supported only on MTP2");
            b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
            break;

      default:
            abort();
      }
      return b0;
}

struct block *
gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
      int mtp3field;
      bpf_u_int32 jvalue;
      bpf_u_int32 jtype;
      int reverse;
{
      struct block *b0;
      bpf_u_int32 val1 , val2 , val3;

      switch (mtp3field) {

      case M_SIO:
            if (off_sio == (u_int)-1)
                  bpf_error("'sio' supported only on SS7");
            /* sio coded on 1 byte so max value 255 */
            if(jvalue > 255)
                    bpf_error("sio value %u too big; max value = 255",
                        jvalue);
            b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
                (u_int)jtype, reverse, (u_int)jvalue);
            break;

        case M_OPC:
              if (off_opc == (u_int)-1)
                  bpf_error("'opc' supported only on SS7");
            /* opc coded on 14 bits so max value 16383 */
            if (jvalue > 16383)
                    bpf_error("opc value %u too big; max value = 16383",
                        jvalue);
            /* the following instructions are made to convert jvalue
             * to the form used to write opc in an ss7 message*/
            val1 = jvalue & 0x00003c00;
            val1 = val1 >>10;
            val2 = jvalue & 0x000003fc;
            val2 = val2 <<6;
            val3 = jvalue & 0x00000003;
            val3 = val3 <<22;
            jvalue = val1 + val2 + val3;
            b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
                (u_int)jtype, reverse, (u_int)jvalue);
            break;

      case M_DPC:
              if (off_dpc == (u_int)-1)
                  bpf_error("'dpc' supported only on SS7");
            /* dpc coded on 14 bits so max value 16383 */
            if (jvalue > 16383)
                    bpf_error("dpc value %u too big; max value = 16383",
                        jvalue);
            /* the following instructions are made to convert jvalue
             * to the forme used to write dpc in an ss7 message*/
            val1 = jvalue & 0x000000ff;
            val1 = val1 << 24;
            val2 = jvalue & 0x00003f00;
            val2 = val2 << 8;
            jvalue = val1 + val2;
            b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
                (u_int)jtype, reverse, (u_int)jvalue);
            break;

      case M_SLS:
              if (off_sls == (u_int)-1)
                  bpf_error("'sls' supported only on SS7");
            /* sls coded on 4 bits so max value 15 */
            if (jvalue > 15)
                     bpf_error("sls value %u too big; max value = 15",
                         jvalue);
            /* the following instruction is made to convert jvalue
             * to the forme used to write sls in an ss7 message*/
            jvalue = jvalue << 4;
            b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
                (u_int)jtype,reverse, (u_int)jvalue);
            break;

      default:
            abort();
      }
      return b0;
}

static struct block *
gen_msg_abbrev(type)
      int type;
{
      struct block *b1;

      /*
       * Q.2931 signalling protocol messages for handling virtual circuits
       * establishment and teardown
       */
      switch (type) {

      case A_SETUP:
            b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
            break;

      case A_CALLPROCEED:
            b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
            break;

      case A_CONNECT:
            b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
            break;

      case A_CONNECTACK:
            b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
            break;

      case A_RELEASE:
            b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
            break;

      case A_RELEASE_DONE:
            b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
            break;

      default:
            abort();
      }
      return b1;
}

struct block *
gen_atmmulti_abbrev(type)
      int type;
{
      struct block *b0, *b1;

      switch (type) {

      case A_OAM:
            if (!is_atm)
                  bpf_error("'oam' supported only on raw ATM");
            b1 = gen_atmmulti_abbrev(A_OAMF4);
            break;

      case A_OAMF4:
            if (!is_atm)
                  bpf_error("'oamf4' supported only on raw ATM");
            /* OAM F4 type */
            b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
            b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
            gen_or(b0, b1);
            b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
            gen_and(b0, b1);
            break;

      case A_CONNECTMSG:
            /*
             * Get Q.2931 signalling messages for switched
             * virtual connection
             */
            if (!is_atm)
                  bpf_error("'connectmsg' supported only on raw ATM");
            b0 = gen_msg_abbrev(A_SETUP);
            b1 = gen_msg_abbrev(A_CALLPROCEED);
            gen_or(b0, b1);
            b0 = gen_msg_abbrev(A_CONNECT);
            gen_or(b0, b1);
            b0 = gen_msg_abbrev(A_CONNECTACK);
            gen_or(b0, b1);
            b0 = gen_msg_abbrev(A_RELEASE);
            gen_or(b0, b1);
            b0 = gen_msg_abbrev(A_RELEASE_DONE);
            gen_or(b0, b1);
            b0 = gen_atmtype_abbrev(A_SC);
            gen_and(b0, b1);
            break;

      case A_METACONNECT:
            if (!is_atm)
                  bpf_error("'metaconnect' supported only on raw ATM");
            b0 = gen_msg_abbrev(A_SETUP);
            b1 = gen_msg_abbrev(A_CALLPROCEED);
            gen_or(b0, b1);
            b0 = gen_msg_abbrev(A_CONNECT);
            gen_or(b0, b1);
            b0 = gen_msg_abbrev(A_RELEASE);
            gen_or(b0, b1);
            b0 = gen_msg_abbrev(A_RELEASE_DONE);
            gen_or(b0, b1);
            b0 = gen_atmtype_abbrev(A_METAC);
            gen_and(b0, b1);
            break;

      default:
            abort();
      }
      return b1;
}

Generated by  Doxygen 1.6.0   Back to index